Решение уравнений и неравенств с параметрами скачать

Решение уравнений и неравенств с параметрами
методическая разработка по алгебре (11 класс) по теме

Методика решений уравнений и неравенств с параметрами. Можно использовать на факультативных занятиях и при подготовки к ЕГЭ (часть С).

Скачать:

ВложениеРазмер
reshenie_uravneniy_i_neravenstv_s_parametrami_metodicheskie_rekomendacii.docx305.48 КБ

Предварительный просмотр:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

ГОУ НПО профессиональное училище № 37

«РАЗРАБОТКА МЕТОДИЧЕСКИХ РЕКОМЕНДАЦИЙ РЕШЕНИЯ

КВАДРАТНЫХ УРАВНЕНИЙ И НЕРАВЕНСТВ С ПАРАМЕТРАМИ»

Мацук Галина Николаевна,

преподаватель математики ГОУ НПО

профессионального училища № 37 МО.

2. Цели, основные задачи, методы, технологии, требования к знаниям.

3. Методика решения квадратных уравнений с параметрами в общем виде.

4. Методика решения квадратных уравнений при начальных условиях.

5. Параметр как равноправная переменная.

6. Методика решения квадратных неравенств с параметрами в общем виде.

7. Методика решения квадратных неравенств при начальных условиях.

Основная задача обучения математике в профессиональном училище заключается в обеспечении прочного и сознательного овладения обучающимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности, достаточных для изучения смежных дисциплин и продолжения образования, а также в профессиональной деятельности, требующей достаточной высокой математической культуры.

Профилированное обучение математике осуществляется через решение задач прикладного характера, связанных с профессиями по металлообработке, электромонтажным работам, деревообработке. Для жизни в современном обществе важным является формирование математического стиля общения, проявляющегося в определенных умственных навыках. Задачи с параметрами обладают диагностической и прогностической ценностью. С их помощью можно проверить знания основных разделов элементарной математики, уровень логического мышления, первоначальные навыки исследовательской работы.

Обучение задачам с параметрами требует от обучающихся больших умственных и волевых усилий, развитого внимания, воспитания таких качеств, как активность, творческая инициатива, коллективно-познавательный труд. Задачи с параметрами ориентированы для изучения во время обобщающего повторения на 2 курсе в период подготовки к итоговой государственной аттестации и на 3 курсе на дополнительных занятиях при подготовке обучающихся, изъявивших желание сдавать выпускные экзамены в форме ЕГЭ.

Основным направлением модернизации математического образования является отработка механизмов итоговой аттестации через введение ЕГЭ. В заданиях по математике в последние годы вводятся задачи с параметрами. Обязательны такие задания на вступительных экзаменах в вузы. Появление таких задач очень актуально, так как с их помощью проверяется техника владения формулами элементарной математики, методами решения уравнений и неравенств, умение выстраивать логическую цепочку рассуждений, уровень логического мышления абитуриента. Анализ предыдущих результатов ЕГЭ за несколько предыдущих лет показывает, что выпускники с большим трудом решают такие задания, а многие даже не приступают к ним. Большинство либо вовсе не справляются с такими заданиями, либо приводят громоздкие выкладки. Причиной этого является отсутствие системы заданий по данной теме в школьных учебниках. В связи с этим возникла необходимость в проведении в выпускных группах при подготовке к экзаменам специальных тем по решению задач с параметрами и задач прикладного характера, связанных с профессиональной направленностью.

Изучение данных тем предназначено для обучающихся 3 курса, которые хотят научиться способам решения задач повышенного уровня сложности по алгебре и началам анализа. Решение таких задач вызывает у них значительные затруднения. Это связано с тем, что каждое уравнение или неравенство с параметрами представляет собой целый класс обычных уравнений и неравенств, для каждого из которых должно быть получено решение.

В процессе решения задач с параметрами в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ, классификация и систематизация, аналогия. Так как в учебном плане в профессиональных училищах предусмотрено проведение консультаций по математике, которые имеются в расписании учебных занятий, то для обучающихся, обладающих достаточной математической подготовкой, проявляющих интерес к изучаемому предмету, имеющих дальнейшей целью поступление в вуз, целесообразно использовать указанные часы для решения задач с параметрами для подготовки к олимпиадам, математическим конкурсам, различного рода экзаменам, в частности ЕГЭ. Особенно актуально решение таких задач для прикладного и практического характера, которое поможет при проведении различных исследований.

2. Цели, основные задачи, методы, технологии, требования к знаниям.

  • Формирование умений и навыков по решению задач с параметрами, сводящихся к исследованию квадратных уравнений и неравенств.
  • Формирование интереса к предмету, развитие математических способностей, подготовка к ЕГЭ.
  • Расширение математических представлений о приемах и методах решения уравнений и неравенств.
  • Развитие логического мышления и навыков исследовательской деятельности.
  • Приобщение к творческой, исследовательской и познавательной деятельности.
  • Обеспечение условий для самостоятельной творческой работы.
  • Воспитание у обучающихся умственных и волевых усилий, развитого внимания, активности, творческой инициативы, умений коллективно-познавательного труда.

Основные задачи проекта:

  • Предоставить обучающимся возможность реализовать свой интерес к математике и индивидуальные возможности для его освоения.
  • Способствовать усвоению фактических знаний и умений.
  • Показать практическую значимость задач с параметрами в сфере прикладного исследования.
  • Научить способам решения стандартных и нестандартных уравнений и неравенств.
  • Углубить знания по математике, предусматривающие формирование устойчивого интереса к предмету.
  • Выявить и развить математические способности обучающихся.
  • Обеспечить подготовку к поступлению в вузы.
  • Обеспечить подготовку к профессиональной деятельности, требующей высокой математической культуры.
  • Организовать исследовательскую и проектную деятельность, способствующую развитию интеллектуальных и коммуникативных качеств.

Методы, используемые при проведении занятий:

  • Лекция – для передачи теоретического материала, сопровождающаяся беседой с обучающимися.
  • Семинары – для закрепления материла по обсуждению теории.
  • Практикумы – для решения математических задач.
  • Дискуссии – для аргументации вариантов своих решений.
  • Различные формы групповой и индивидуальной деятельности.
  • Исследовательская деятельность, которая организуется через: работу с дидактическим материалом, подготовку сообщений, защиту рефератов и творческих работ.
  • Лекции – презентации с использованием компьютера и проектора.
  • Лекционно-семинарская система обучения.
  • Информационно-коммуникационные технологии.
  • Исследовательский метод в обучении, направленный на развитие мыслительных способностей.
  • Проблемное обучение, предусматривающую мотивацию к исследованию путем постановки проблемы, обсуждение различных вариантов проблемы.
  • Технология деятельностного метода, помогающая вывить познавательные интересы обучающихся.

Требования к знаниям обучающихся.

В результате изучения различных способов решения квадратных уравнений и неравенств с параметрами обучающиеся должны приобрести умения:

  • Прочно усвоить понятие параметра в квадратном уравнении и квадратном неравенстве;
  • Уметь решать квадратные уравнения с параметрами.
  • Уметь решать квадратные неравенства с параметрами.
  • Находить корни квадратичной функции.
  • Строить графики квадратичных функций.
  • Исследовать квадратичный трехчлен.
  • Применять рациональные приемы тождественных преобразований.
  • Использовать наиболее употребляемые эвристические приемы.
  • Уметь применять полученные знания при работе на персональном компьютере.
  • Уроки – самооценки и оценки товарищей.
  • Презентация учебных проектов.
  • Тестирование.
  • Рейтинг – таблица.
  • Домашние задачи из сборников по ЕГЭ прошлых лет.
  • Контрольные работы.

3. Методика решения квадратных уравнений с параметрами в общем виде.

Не надо бояться задач с параметрами. Прежде всего при решении уравнений и неравенств с параметрами надо сделать то, что делается при решении любого уравнения и неравенства – привести заданные уравнения или неравенства к более простому виду, если это возможно: разложить рациональное выражение на множители, сократить, вынести множитель за скобки и т.д. Встречаются задачи, которые можно разделить на два больших класса.

В первый класс можно отнести примеры, в которых надо решить уравнение или неравенство при всех возможных значениях параметра.

Ко второму классу отнесем примеры, в которых надо найти не все возможные решения, а лишь те из них, которые удовлетворяют некоторым дополнительным условиям. Класс таких задач неисчерпаем.

Наиболее понятный для обучающихся способ решения таких задач состоит в том, что сначала находят все решения, а затем отбирают те, которые удовлетворяют дополнительным условиям.

При решении задач с параметрами иногда удобно строить графики в обычной плоскости (х,у), а иногда лучше рассмотреть графики в плоскости (х,а), где х – независимая переменная, а «а» – параметр. Это прежде всего возможно в задаче, где приходится строить знакомые элементарные графики: прямые, параболы, окружности и т.д. Кроме того эскизы графиков иногда помогают наглядно увидеть и «ход» решения.

При решении уравнений f (х,а) = 0 и неравенств f (х,а) › 0 надо помнить, что в первую очередь рассматривают решение при тех значениях параметра, при которых обращается в ноль коэффициент при старшей степени х квадратного трехчлена f (х,а), понижая тем самым степень. Квадратное уравнение А(а) х 2 + В(а) х + С(а) = 0 при А(а) = 0 превращается в линейное, если при этом В(а) ≠ 0, а методы решения квадратных и линейных уравнений различны.

Вспомним основные формулы для работы с квадратными уравнениями.

Уравнение вида ах 2 + вх + с = 0, где х  R – неизвестные, а, в, с – выражения, зависящие только от параметров, причем а ≠ 0, называется квадратным уравнением, а D = b 2 – 4ас называется дискриминантом квадратного трехчлена.

Если D > 0, то уравнение имеет два различных корня

х 1 = , х 2 = , и тогда ах 2 + вх + с = а (х – х 1 ) (х – х 2 ).

Эти корни через коэффициенты уравнения связаны формулами Виета

Если D = 0, то уравнение имеет два совпадающих корня х 1 = х 2 = , и тогда ах 2 + вх + с = а (х – х 1 ) 2 . В этом случае говорят, что уравнение имеет одно решение.

Когда , т.е. = 2к, корни квадратного уравнения определяются по формуле х 1,2 = ,

Для решения приведенного квадратного уравнения х 2 + pх + q = 0

Используется формула х 1,2 = — , а также формулы Виета

Допустимыми будем считать только те значения параметров, при которых а, в, с – действительны.

Примеры. Решить уравнения:

При а ≠ — 1, х ≠ 2 получаем х 2 + 2ах – 3в + 4 = 0 и корни

х 1 = — а — , х 2 = -а + , существующие при

а 2 + 2а – 4  0, т.е. при

Теперь проверим, нет ли таких а, при которых либо х 1 , либо х 2 равен 2. Подставим в квадратное уравнение х = 2, при этом получим а = — 8.

Второй корень в таком случае равен (по теореме Виета) и при а = — 8 равен 14.

Ответ: при а = — 8 единственное решение х = 14;

Если а  ( — ∞; — 8)  (- 8; — 4)  (1; + ∞) – два корня х 1 и х 2 ;

Если а = — единственное решение х = соответственно;

Если а  ( — 4; 1), то х   .

Иногда уравнения с дробными членами приводятся к квадратным. Рассмотрим следующее уравнение.

Решение: При а = 0 оно не имеет смысла, значение х должно удовлетворять условиям: х  -1, х  -2. Умножив все члены уравнения на а (х + 1) (х +2)  0,

Получим х 2 – 2(а – 1)х + а 2 – 2а – 3 = 0, равносильное данному. Его корни:

х 1 = а + 1, х 2 = — 3. Выделим из этих корней посторонние, т.е. те, которые равны – 1 и – 2:

х 1 = а + 1 = — 1, а = — 2, но при а = — 2 х 2 = — 5;

х 1 = а + 1 = — 2, а = — 3, но при а = — 3 х 2 = — 6;

х 2 = а — 3 = — 1, а = 2, но при а = 2 х 1 = 3;

х 2 = а — 3 = — 2, а = 1, но при а = 1 х 1 = 2.

Ответ: при а ≠ 0, а ≠  2, , а ≠ — 3, , а ≠ 1 х 1 = а + 1, х 2 = а – 3;

при а = — 2 х = — 5; при а = — 3 х = — 6.

4.Методика решения квадратных уравнений при начальных условиях.

Условия параметрических квадратных уравнений разнообразны. Например, нужно найти значение параметра при котором корни: положительны, отрицательны, имеют разные знаки, больше или меньше какого-либо числа и т.д. Для их решения следует использовать свойства корней квадратного уравнения ах 2 + вх + с = 0.

Если D > 0, а > 0, то уравнение имеет два действительных различных корня, знаки которых при с > 0 одинаковы и противоположны знаку коэффициента в, а при с

Если D = 0, а > 0, то уравнение имеет действительные и равные между собой корни, знак которого противоположен знаку коэффициента в.

Если D 0, то уравнение не имеет действительных корней.

Аналогично можно установить свойства корней квадратного уравнения и для а

  1. Если в квадратном уравнении поменять местами коэффициенты а и с, то получим уравнение, корни которого обратны корням данного.
  2. Если в квадратном уравнении поменять знак коэффициента в, то получим уравнение, корни которого противоположны корням данного.
  3. Если в квадратном уравнении коэффициенты а и с имеют разные знаки, то оно имеет действительные корни.
  4. Если а > 0 и D = 0, то левая часть квадратного уравнения – есть полный квадрат, и наоборот, если левая часть уравнения есть полный квадрат, то а > 0 и D = 0.
  5. Если все коэффициенты уравнения рациональны и дискриминант выражает полный квадрат, то корни уравнения рациональны.
  6. Если рассматривается расположение корней относительно нуля, то применяем теорему Виета.

Отбор корней квадратного трехчлена по условиям и расположение нулей квадратичной функции на числовой прямой.

Пусть f (х) = ах 2 + вх + с, а  0, корни х 1 ˂ х 2 ,  ˂  .

Учебное пособие «Уравнения и неравенства с параметрами»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Государственное бюджетное общеобразовательное учреждение

Самарской области средняя общеобразовательная

школа № 2 им. В. Маскина ж.-д. ст. Клявлино

муниципального района Клявлинский

« Уравнения и неравенства с параметрами» для учащихся 10 –11 классов

данное пособие является приложением к программе элективного курса «Уравнения и неравенства с параметрами», которая прошла внешнюю экспертизу (научно-методическим экспертным советом министерства образования и науки Самарской области от 19 декабря 2008 года бала рекомендована к использованию в образовательных учреждениях Самарской области)

Авторы

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Ромаданова Ирина Владимировна

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Сербаева Ирина Алексеевна

Линейные уравнения и неравенства с параметрами……………..4-7

Квадратные уравнения и неравенства с параметрами……………7-9

Дробно- рациональные уравнения с параметрами……………..10-11

Иррациональные уравнения и неравенства с параметрами……11-13

Тригонометрические уравнения и неравенства с параметрами.14-15

Показательные уравнения и неравенства с параметрами………16-17

Логарифмические уравнения и неравенства с параметрами…. 16-18

Задания для самостоятельной работы…………………………. 21-28

Уравнения и неравенства с параметрами.

Если в уравнении или неравенстве некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а само уравнение или неравенство параметрическим.

Для того, чтобы решить уравнение или неравенство с параметрами необходимо:

Выделить особое значение — это то значение параметра, в котором или при переходе через которое меняется решение уравнения или неравенства.

Определить допустимые значения – это значения параметра, при которых уравнение или неравенство имеет смысл.

Решить уравнение или неравенство с параметрами означает:

1) определить, при каких значениях параметров существуют решения;

2) для каждой допустимой системы значений параметров найти соответствующее множество решений.

Решить уравнение с параметром можно следующими методами: аналитическим или графическим.

Аналитический метод предполагает задачу исследования уравнения рассмотрением нескольких случаев, ни один из которых нельзя упустить.

Решение уравнения и неравенства с параметрами каждого вида аналитическим методом предполагает подробный анализ ситуации и последовательное исследование, в ходе которого возникает необходимость «аккуратного обращения» с параметром.

Графический метод предполагает построение графика уравнения, по которому можно определить, как влияет соответственно, на решение уравнения изменение параметра. График подчас позволяет аналитически сформулировать необходимые и достаточные условия для решения поставленной задач. Графический метод решения особенно эффективен тогда, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра и обладает несомненным преимуществом увидеть это наглядно.

§ 1. Линейные уравнения и неравенства.

Линейное уравнение а x = b , записанное в общем виде, можно рассматривать как уравнение с параметрами, где x – неизвестное, a , b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра a является значение а = 0.

Если а ¹ 0, то при любой паре параметров а и b оно имеет единственное решение х=.

Если а = 0, то уравнение принимает вид : 0х= b . В этом случае значение

b = 0 является особым значением параметра b .

При b ¹ 0 уравнение решений не имеет.

При b = 0 уравнение примет вид: 0х = 0. Решением данного уравнения является любое действительное число.

Неравенства вида ах > b и ax b ( а ≠ 0) называются линейными неравенствами. Множество решений неравенства ах > b – промежуток

(; +), если a > 0 , и (-;) , если а . Аналогично для неравенства

ах b множество решений – промежуток (-;), если a > 0, и (; +), если а

Пример 1. Решить уравнение ах = 5

Решение : Это линейное уравнение .

Если а = 0, то уравнение 0 × х = 5 решения не имеет.

Если а ¹ 0, х = — решение уравнения.

Ответ: при а ¹ 0, х=

при а = 0 решения нет.

Пример 2. Решить уравнение ах – 6 = 2а – 3х.

Решение: Это линейное уравнение, ах – 6 = 2а – 3х (1)

ах + 3х = 2а +6

Переписав уравнение в виде (а+3)х = 2(а+3), рассмотрим два случая:

Если а= -3, то любое действительное число х является корнем уравнения (1). Если же а ¹ -3, уравнение (1) имеет единственный корень х = 2.

Ответ: При а = -3, х R ; при а ¹ -3, х = 2.

Пример 3. При каких значениях параметра а среди корней уравнения

2ах – 4х – а 2 + 4а – 4 = 0 есть корни больше 1 ?

Решение: Решим уравнение 2ах – 4х – а 2 + 4а – 4 = 0 – линейное уравнение

2(а — 2) х = а 2 – 4а +4

2(а — 2) х = (а – 2) 2

При а = 2 решением уравнения 0х = 0 будет любое число, в том числе и большее 1.

При а ¹ 2 х =. По условию х > 1, то есть >1, а > 4.

Ответ: При а <2>U (4;∞).

Пример 4. Для каждого значения параметра а найти количество корней уравнения ах=8.

Решение. ах = 8 – линейное уравнение.

а =,

y = a – семейство горизонтальных прямых;

y = графиком является гипербола. Построим графики этих функций.

Ответ: Если а =0, то уравнение решений не имеет. Если а ≠ 0, то уравнение имеет одно решение.

Пример 5. С помощью графиков выяснить, сколько корней имеет уравнение:

y = ах – 1 – графиком является прямая, проходящая через точку (0;-1).

Построим графики этих функций.

Ответ:При|а|>1— один корень

при | а|≤1 – уравнение корней не имеет.

Решение : ах + 4 > 2х + а 2 (а – 2) х > а 2 – 4. Рассмотрим три случая.

а=2 . Неравенство 0 х > 0 решений не имеет.

а > 2. (а – 2) х > ( а – 2)(а + 2) х > а + 2

а (а – 2) х > ( а – 2)(а + 2) х а + 2

Ответ. х > а + 2 при а > 2; х при а при а=2 решений нет.

§ 2. Квадратные уравнения и неравенства

Для решения квадратных уравнений с параметром можно использовать стандартные способы решения на применение следующих формул:

1 ) дискриминанта квадратного уравнения: D = b ² — 4 ac , (²- ас)

2) формул корней квадратного уравнения: х 1 =, х 2 =,

1,2 = )

Квадратными называются неравенства вида

Множество решений неравенства (3) получается объединением множеств решений неравенства (1) и уравнения , a х 2 + b х + с=0. Аналогично находится множество решений неравенства (4).

Если дискриминант квадратного трехчлена a х 2 + b х + с меньше нуля, то при а >0 трехчлен положителен при всех х R .

Если квадратный трехчлен имеет корни (х 1 2 ), то при а > 0 он положителен на множестве (-; х 2 )( х 2; +) и отрицателен на интервале

1 ; х 2 ). Если а 1 ; х 2 ) и отрицателен при всех х (-; х 1 )( х 2; +).

Пример 1. Решить уравнение ах² — 2 (а – 1)х – 4 = 0.

Это квадратное уравнение

Решение: Особое значение а = 0.

При а = 0 получим линейное уравнение 2х – 4 = 0. Оно имеет единственный корень х = 2.

При а ≠ 0. Найдем дискриминант.

Если а = -1, то D = 0 – один корень.

Найдем корень, подставив вместо а = -1.

-х² + 4х – 4= 0, то есть х² -4х + 4 = 0, находим, что х=2.

Если а ≠ — 1 , то D >0 . По формуле корней получим: х=;

х 1 =2, х 2 =.

Ответ: При а=0 и а= -1 уравнение имеет один корень х = 2; при а ≠ 0 и

а ≠ — 1 уравнение имеет два корня х 1 =2, х 2 =-.

Пример 2. Найдите количество корней данного уравнения х²-2х-8-а=0 в зависимости от значений параметра а.

Решение. Перепишем данное уравнение в виде х²-2х-8=а

y = х²-2х-8— графиком является парабола;

y — семейство горизонтальных прямых.

Построим графики функций.

Ответ: При а -9, уравнение имеет два решения.

Пример 3. При каких а неравенство (а – 3) х 2 – 2ах + 3а – 6 >0 выполняется для всех значений х ?

Решение. Квадратный трехчлен положителен при всех значениях х, если

, откуда следует, что a > 6 .

§ 3. Дробно- рациональные уравнения с параметром,

сводящиеся к линейным

Процесс решения дробных уравнений выполняется по обычной схеме: дробное заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего решается целое уравнение, исключая посторонние корни, то есть числа, которые обращают знаменатель в нуль.

В случае уравнений с параметром эта задача более сложная. Здесь, чтобы «исключить» посторонние корни, требуется найти значение параметра, обращающее общий знаменатель в нуль, то есть решить соответствующие уравнения относительно параметра.

Пример 1. Решить уравнение = 0

Это дробно- рациональное уравнение

Решение: Д.З: х +2 ≠ 0 , х ≠ -2

При а = -2 корней нет.

Пример 2 . Решить уравнение= (1)

Это дробно- рациональное уравнение

Решение: Значение а = 0 является особым. При а = 0 уравнение теряет смысл и, следовательно, не имеет корней. Если а ≠ 0, то после преобразований уравнение примет вид: х² + 2 (1-а) х + а² — 2а – 3 = 0 (2) – квадратное уравнение.

Найдем дискриминант = (1 – а)² — (а² — 2а – 3)= 4, находим корни уравнения х 1 = а + 1, х 2 = а — 3.

При переходе от уравнения (1) к уравнению (2) расширилась область определения уравнения (1), что могло привести к появлению посторонних корней. Поэтому, необходима проверка.

П р о в е р к а. Исключим из найденных значений х такие, при которых

х 1+1=0, х 1+2=0, х2+1=0, х2+2=0.

Если х 1+2=0, то есть (а+1)+2=0, то а = — 3. Таким образом, при а = — 3, х1 посторонний корень уравнения. (1).

Если х2+1=0, то есть (а – 3) + 1= 0, то а = 2. Таким образом, при а = 2 х2 посторонний корень уравнения (1).

Если х2+2=0, то есть (а – 3) + 2 = 0, то а=1. Таким образом, при а = 1,

х2 — посторонний корень уравнения (1).

В соответствии с этим при а = — 3 получаем х = — 3 – 3 = -6;

при а = — 2 х = -2 – 3= — 5;

при а = 1 х =1 + 1= 2;

при а = 2 х=2+1 = 3.

Можно записать ответ.

Ответ: 1) если а= -3, то х= -6; 2) если а= -2, то х= -5; 3) если а= 0, то корней нет; 4) если а= 1, то х= 2; 5) если а=2, то х=3; 6) если а ≠ -3, а ≠ -2, а ≠ 0, а≠ 1, а ≠ 2, то х1 = а + 1, х2 = а-3.

§4. Иррациональные уравнения и неравенства

Уравнения и неравенства, в которых переменная содержится под знаком корня, называется иррациональным.

Решение иррациональных уравнений сводится к переходу от иррационального к рациональному уравнению путем возведения в степень обеих частей уравнения или замены переменной. При возведении обеих частей уравнения в четную степень возможно появление посторонних корней. Поэтому при использовании указанного метода следует проверить все найденные корни подстановкой в исходное уравнение, учитывая при этом изменения значений параметра.

Уравнение вида = g ( x ) равносильно системе

Неравенство f ( x ) ≥ 0 следует из уравнения f ( x ) = g 2 ( x ).

При решении иррациональных неравенств будем использовать следующие равносильные преобразования:

≤ g(x) ≥g(x)

Пример 1. Решите уравнение = х + 1 (3)

Это иррациональное уравнение

Решение: По определению арифметического корня уравнение (3) равносильно системе .

При а = 2 первое уравнение системы имеет вид 0 х = 5, то есть не имеет решений.

При а≠ 2 х=. Выясним, при каких значениях а найденное значение х удовлетворяет неравенству х ≥ -1: ≥ — 1, ≥ 0,

откуда а ≤ или а > 2.

Ответ: При а≤, а > 2 х= , при уравнение решений не имеет.

Пример 2. Решить уравнение = а (приложение 4)

Решение. y =

y = а – семейство горизонтальных прямых.

Построим графики функций.

Пример 3 . Решим неравенство (а+1)

Решение. О.Д.З. х ≤ 2. Если а+1 ≤0, то неравенство выполняется при всех допустимых значениях х. Если же а+1>0, то

(а+1)

откуда х (2- 2

Ответ. х (- ;2 при а ( —;-1, х (2- 2

при а ( -1;+).

§ 5. Тригонометрические уравнения и неравенства.

Приведем формулы решений простейших тригонометрических уравнений:

Sinx = a x= (-1) n arcsin a+πn, n Z, ≤1, (1)

Cos x = a x = ±arccos a + 2 πn, , n Z, ≤1. (2)

Если >1, то уравнения (1) и (2) решений не имеют .

tg x = a x= arctg a + πn, n Z, aR

ctg x = a x = arcctg a + πn, n Z, aR

Для каждого стандартного неравенства укажем множество решений:

1. sin x > a arcsin a + 2 πn Z,

при a xR ; при a ≥ 1, решений нет.

при а≤-1, решений нет; при а >1, xR

3. cos x > a arccos a + 2 πn x arccos a + 2 πn , n Z ,

при а xR ; при a ≥ 1 , решений нет.

при а≤-1 , решений нет ; при a > 1, x R

5. tg x > a, arctg a + πnZ

Пример1. Найти а, при которых данное уравнение имеет решение:

Cos 2 x + 2(a-2)cosx + a 2 – 4a – 5 =0.

Решение. Запишем уравнение в виде

Уравнение cosx = 5- а имеет решения при условии -1≤ 5- а ≤1 4≤ а ≤ 6, а уравнение cosx = — а-1 при условии -1≤ -1- а ≤ 1 -2 ≤ а ≤0.

Ответ. а -2; 0 4; 6

Пример 2. При каких b найдется а такое, что неравенство + b > 0 выполняется при всех х ≠ πn , n Z .

Решение. Положим а = 0. Неравенство выполняется при b >0. Покажем теперь, что ни одно b ≤0 не удовлетворяет условиям задачи. Действительно, достаточно положить х = π /2, если а π /2 при а ≥0.

§ 6. Показательные уравнения и неравенства

1. Уравнение h ( x ) f ( x ) = h ( x ) g ( x ) при h ( x ) > 0 равносильно совокупности двух систем и

2. В частном случае ( h ( x )= a ) уравнение а f ( x ) = а g ( x ) при а > 0, равносильно совокупности двух систем

и

3. Уравнение а f ( x ) = b , где а > 0, a ≠1, b >0, равносильно уравнению

f ( x )= log a b . Случай а =1 рассматриваем отдельно.

Решение простейших показательных неравенств основано на свойстве степени. Неравенство вида f ( a x ) > 0 при помощи замены переменной t = a x сводится к решению системы неравенств а затем к решению соответствующих простейших показательных неравенств.

При решении нестрого неравенства необходимо к множеству решений строгого неравенства присоединить корни соответствующего уравнения. Как и при решении уравнений во всех примерах, содержащих выражение а f ( x ) , предполагаем а > 0. Случай а = 1 рассматриваем отдельно.

Пример 1 . При каких а уравнение 8 х = имеет только положительные корни?

Решение. По свойству показательной функции с основанием, большим единицы, имеем х>0 8 х >1 >1 >0, откуда a (1,5;4).

Ответ. a (1,5;4).

Решение. Рассмотрим три случая:

1. а . Так как левая часть неравенства положительна, а правая отрицательна, то неравенство выполняется для любых х R .

3. а > 0 . a 2 ∙2 x > a 2 x > x > — log 2 a

Ответ. х R при а > 0; решений нет при a =0; х (- log 2 a ; +) при а> 0 .

§ 7. Логарифмические уравнения и неравенства

Приведем некоторые эквивалентности, используемые при решении логарифмических уравнений и неравенств.

В частности, если а >0, а ≠1, то

log a g (x)= log a h(x)

2. Уравнение log a g (x)=b g (x)= a b ( а >0, a ≠ 1, g(x) >0).

3. Неравенство log f ( x ) g ( x ) ≤ log f ( x ) h ( x ) равносильно совокупности двух систем: и

Если а, b – числа, а >0, а ≠1, то

log a f (x) ≤ b

log a f (x) > b

Пример 1. Решите уравнение

Решение. Найдем ОДЗ: х > 0, х ≠ а 4 , a > 0, а ≠ 1. Преобразуем уравнение

log х – 2 = 4 – log a x log х + log a x – 6 = 0, откуда log a x = — 3

х = а -3 и log a x = 2 х = а 2 . Условие х = а 4 а – 3 = а 4 или а 2 = а 4 не выполняется на ОДЗ.

Ответ: х = а -3 , х = а 2 при а ( 0; 1) (1; ).

Пример 2. Найдите наибольшее значение а, при котором уравнение

2 log + a = 0 имеет решения.

Решение. Выполним замену = t и получим квадратное уравнение 2 t 2 – t + a = 0. Решая, найдем D = 1-8 a . Рассмотрим D ≥0, 1-8 а ≥0 а.

При а = квадратное уравнение имеет корень t = >0.

Ответ. а =

Пример 3 . Решить неравенство log ( x 2 – 2 x + a ) > — 3

Решение. Решим систему неравенств

Корни квадратных трехчленов х 1,2 = 1 ± и х 3,4 = 1 ±.

Критические значения параметра : а = 1 и а = 9.

Пусть Х1 и Х2 – множества решений первого и второго неравенств, тогда

Х 1 Х 2 = Х – решение исходного неравенства.

При 0 a 1 = (- ;1 — )( 1 + ; +), при а > 1 Х 1 = (-;+).

При 0 a 2 = (1 —; 1 +), при а ≥9 Х 2 – решений нет.

Рассмотрим три случая:

1. 0 a ≤1 Х = (1 —;1 — )(1 + ;1 +).

3. a ≥ 9 Х – решений нет.

Высокий уровень С1, С2

Пример 1. Найдите все значения р, при которых уравнение

р ∙ ctg 2 x + 2 sinx + p = 3 имеет хотя бы один корень.

Решение. Преобразуем уравнение

р ∙ ( — 1) + 2 sinx + p = 3, sinx = t , t , t 0.

p + 2 t + p = 3, + 2 t = 3, 3 -2t = , 3t 2 – 2t 3 = p .

Пусть f ( y ) = 3 t 2 – 2 t 3 . Найдем множество значений функции f ( x ) на . у / = 6 t – 6 t 2 , 6 t — 6 t 2 = 0, t 1 =0, t 2 = 1. f (-1) = 5, f (1) = 1.

При t , E ( f ) = ,

При t , E ( f ) = , то есть при t , E ( f ) = .

Чтобы уравнение 3 t 2 – 2 t 3 = p ( следовательно, и данное) имело хотя бы один корень необходимо и достаточно p E ( f ), то есть p .

Ответ. .

При каких значениях параметра а уравнение log (4 x 2 – 4 a + a 2 +7) = 2 имеет ровно один корень?

Решение. Преобразуем уравнение в равносильное данному:

4 x 2 – 4 a + a 2 +7 = (х 2 + 2) 2 .

Отметим, что если некоторое число х является корнем полученного уравнения, то число – х также является корнем этого уравнения. По условию это не выполнимо, поэтому единственным корнем является число 0.

4∙ 0 2 — 4 a + a 2 +7 = (0 2 + 2) 2 ,

1) a 1 = 1. Тогда уравнение имеет вид: log (4 x 2 +4) =2. Решаем его

4 x 2 + 4 = (х 2 + 2) 2 , 4 x 2 + 4 = х 4 + 4 x 2 + 4, х 4 = 0, х = 0 – единственный корень.

2) a 2 = 3. Уравнение имеет вид: log (4 x 2 +4) =2 х = 0 – единственный корень.

Высокий уровень С4, С5

Пример 3. Найдите все значения р, при которых уравнение

х 2 – ( р + 3)х + 1= 0 имеет целые корни и эти корни являются решениями неравенства: х 3 – 7рх 2 + 2х 2 – 14 рх — 3х +21 р ≤ 0.

Решение. Пусть х 1, х 2 – целые корни уравнения х 2 – ( р + 3)х + 1= 0. Тогда по формуле Виета справедливы равенства х 1 + х 2 = р + 3, х 1 ∙ х 2 = 1. Произведение двух целых чисел х 1 , х 2 может равняться единице только в двух случаях: х 1 = х 2 = 1 или х 1 = х 2 = — 1. Если х 1 = х 2 = 1, то р + 3 = 1+1 = 2 р = — 1; если х 1 = х 2 = — 1, то р + 3 = — 1 – 1 = — 2 р = — 5. Проверим являются ли корни уравнения х 2 – ( р + 3)х + 1= 0 в описанных случаях решениями данного неравенства. Для случая р = — 1, х 1 = х 2 = 1 имеем

1 3 – 7 ∙ (- 1) ∙ 1 2 +2∙ 1 2 – 14 ∙ ( — 1) ∙ 1 – 3 ∙ 1 + 21 ∙ ( — 1) = 0 ≤ 0 – верно; для случая р = — 5, х1 = х2 = — 1 имеем ( — 1) 3 – 7 ∙ ( — 5) ∙ ( -1) 2 + 2 ∙ (-1) 2 – 14 ∙ ( -5) × ( — 1) – 3 ∙ ( — 1) + 21∙ ( -5 ) = — 136 ≤ 0 – верно. Итак, условию задачи удовлетворяют только р = — 1 и р = — 5.

Пример 4. Найдите все положительные значения параметра а, при которых число 1 принадлежит области определения функции

у = ( аа ).

Решение. у = ( аа ). Область определения данной функции составляют все значения х, для которых аа ≥ 0.

Если значения х = 1 принадлежит области определения, то должно выполняться неравенство а а ≥ 0, а а (1)

Таким образом, необходимо найти все а > 0, удовлетворяющие неравенству (1).

1) а = 1 удовлетворяет неравенству (1).

2) При а > 1 неравенство (1) равносильно неравенству 2 + 5аа 2 +6,

а 2 — 5а + 4 ≤ 0. Решение этого неравенства: 1≤ а ≤ 4. Учитывая условие а >1, получим 1

а 2 — 5а + 4 ≥ 0. Его решение а ≤ 1; а ≥ 4 с учетом условия 0

Математика. Уравнения и неравенства с параметром. В 2 ч. Беляева Э.С., Потапов А.С., Титоренко С.А.

М.: 2009.— Ч.1 — 480с., Ч.2 — 444 с.

Учебный комплект (сборник задач в двух частях) в полном объеме раскрывает тему «Уравнения и неравенства с параметром «. В части 1 разбираются линейные, квадратные и тригонометрические уравнения с параметром. В части 2 разбираются показательные, логарифмические и иррациональные уравнения и неравенства с параметром. Детально рассмотрен широкий спектр задач разных уровней сложности, доступно и наглядно изложены методы решения. Комплект станет незаменимым помощником не только для учеников, но и для учителей.

Для учащихся старших классов, преподавателей математики, абитуриентов, студентов математических специальностей.

ЧАСТЬ 1.
Предисловие 3
О работе с мультимедийным приложением к книге 6
Основные понятия 8
Раздел I. Линейные уравнения и неравенства с параметром и к ним сводимые 14
1. Линейные уравнения с параметром и к ним сводимые 14
1.1. Уравнения первой степени с параметром (без «ветвлений») 16
1.2. Простейшие линейные уравнения с параметром (с «ветвлениями») 24
1.3. Дробно-рациональные уравнения с параметром 29
1.4. Более сложные дробно-рациональные уравнения с параметром, сводимые к линейным 35
1.5. Уравнения с дополнительными условиями 38
1.6. Уравнения, содержащие переменную под знаком модуля 43
2. Линейные неравенства с параметром и к ним сводимые 61
2.1. Подготовительные неравенства и их системы 61
2.2. Простейшие линейные неравенства с параметром 73
2.3. Дробно-рациональные неравенства с параметром 82
2.4. Неравенства, содержащие переменную под знаком модуля 91
Раздел II. Квадратные уравнения и неравенства с параметром и к ним сводимые 106
1. Справочный материал 106
1.1. Квадратные уравнения 106
1.2. Квадратичная функция 109
1.3. Расположение корней квадратного трехчлена относительно заданных точек .. 110
2. Квадратные уравнения с параметром и к ним сводимые 113
2.1. Неполные квадратные уравнения с параметром 113
2.2. Приведенные квадратные уравнения с параметром 121
2.3. Квадратные уравнения с параметром . 133
2.4. Уравнения с дополнительными условиями 141
2.5. Дробно-рациональные уравнения с параметром, сводимые к квадратным уравнениям 159
2.5.1. Подготовительные уравнения . 159
2.5.2. Дробно-рациональные уравнения с параметром, сводимые к квадратным уравнениям 172
2.6. Более сложные квадратные уравнения и их системы с параметром и к ним сводимые 181
3. Квадратные неравенства с параметром и к ним сводимые 210
3.1. Подготовительные неравенства и их системы 210
3.2. Квадратные неравенства с параметром и к ним сводимые. Системы неравенств . . 221
3.3. Более сложные квадратные неравенства и их системы с параметром . . 246
Раздел III. Тригонометрические уравнения и неравенства с параметром 286
1. Единичная (тригонометрическая) окружность . . 286
1.1. Понятие единичной (тригонометрической) окружности 289
1.2. Запись чисел, соответствующих точкам единичной окружности 291
1.3. Запись множества корней наиболее рациональным образом. 296
2. Некоторые сведения из тригонометрии . . . 302
2.1. Синус, косинус, тангенс и котангенс действительного числа 302
2.2. Обратные тригонометрические функции 305
2.2.1. Определения, свойства и графики обратных тригонометрических функций 306
2.2.2. Нахождение значения прямой тригонометрической функции от значения обратной, и наоборот 310
2.2.3. Тождества с обратными тригонометрическими функциями. 319
2.2.4. Уравнения с обратными тригонометрическими функциями . 321
2.3. Решение простейших тригонометрических уравнений 326
2.4. Таблица «опасных» формул 330
2.5. Решение простейших тригонометрических неравенств 333
3. Метод «лепестков» в решении тригонометрических уравнений и неравенств 346
4. Основные приемы решения тригонометрических уравнений и неравенств с параметром 365
4.1. Простейшие тригонометрические уравнения с параметром и к ним сводимые 365
4.2. Тригонометрические уравнения и системы с параметром 393
4.3. Тригонометрические неравенства с параметром 431
Литература 466
Приложение 469

ЧАСТЬ 2
Предисловие 3
Раздел I. Иррациональные уравнения и неравенства с параметром 7
1. Справочный материал 7
1.1. Степени и корни 7
1.2. Упражнения на действия с радикалами 10
1.3. Иррациональные уравнения и системы 35
1.3.1. Подготовительные упражнения 39
1.3.2. Анализ области определения уравнения (ООУ) 39
1.3.3. Простейшие иррациональные уравнения 42
1.3.4. Возведение обеих частей уравнения в четную степень 45
1.3.5. Графическое решение иррациональных уравнений 51
1.3.6. Метод замены переменных . 54
1.3.7. Применение свойств радикалов 63
1.3.8. Умножение обеих частей уравнения на сопряженное выражение 66
1.3.9. Сведение к системе уравнений 68
1.3.10. Использование свойств функций 71
1.3.11. Иррациональные уравнения, содержащие кубические корни 73
1.4. Иррациональные неравенства 77
1.4.1. Подготовительные упражнения 81
1.4.2. Анализ области определения неравенства 83
1.4.3. Простейшие иррациональные неравенства 85
1.4.4. Неравенства вида f(x)Jq>(x) > О,
1.4.5. Возведение обеих частей неравенства в четную степень 95
1.4.6. Метод замены переменных . 99
1.4.7. Метод интервалов решения иррациональных неравенств 102
2. Иррациональные уравнения и системы уравнений с параметром 107
2.1. Основные понятия 107
2.2. Подготовительные упражнения 112
2.3. Простейшие иррациональные уравнения с параметром 118
2.4. Более сложные иррациональные уравнения и системы с параметром 131
3. Иррациональные неравенства с параметром 159
3.1. Подготовительные упражнения 159
3.2. Простейшие иррациональные неравенства с параметром 164
3.3. Более сложные иррациональные неравенства и системы с параметром 175
Раздел II. Показательные и логарифмические уравнения и неравенства с параметром 222
1. Справочный материал 222
1.1. Показательная функция. Свойства показательной функции 222
1.2. Показательные уравнения и неравенства 224
1.3. Логарифм числа. Свойства логарифмов 227
1.4. Логарифмическая функция и ее свойства 230
1.5. Логарифмические уравнения и неравенства 232
2. Показательные уравнения с параметром . . 240
2.1. Подготовительные уравнения 240
2.2. Простейшие показательные уравнения с параметром 244
2.3. Более сложные показательные уравнения с параметром . 271
3. Показательные неравенства с параметром 290
3.1. Подготовительные неравенства 290
3.2. Простейшие показательные неравенства с параметром 296
3.3. Более сложные показательные неравенства с параметром 317
4. Логарифмические уравнения с параметром 335
4.1. Подготовительные уравнения 335
4.2. Простейшие логарифмические уравнения с параметром и к ним сводимые 344
4.3. Более сложные логарифмические уравнения и системы с параметром 367
5. Логарифмические неравенства с параметром 389
5.1. Подготовительные неравенства 389
5.2. Примеры логарифмических неравенств с параметром 398
Литература 440

О том, как читать книги в форматах pdf , djvu — см. раздел » Программы; архиваторы; форматы pdf, djvu и др. «


источники:

http://infourok.ru/uchebnoe_posobie_uravneniya_i_neravenstva_s_parametrami-415388.htm

http://go.alleng.org/d/math/math1166.htm