Решение уравнений максвелла для плоских электромагнитных волн

Уравнения Максвелла и волновое уравнение

Электромагнитные волны

В процессе распространения механической волны в упругой среде в колебательное движение вовлекаются частицы среды. Причиной этого процесса является наличие взаимодействия между молекулами.

Помимо упругих волн в природе существует волновой процесс иной природы. Речь идет об электромагнитных волнах, представляющих собой процесс распространения колебаний электромагнитного поля. По существу мы живем в мире ЭМВ. Их диапазон невероятно широк – это радиоволны, инфракрасное излучение, ультрафиолетовое, рентгеновское излучения, γ – лучи. Особое место в этом многообразии занимает видимая часть диапазона – свет. Именно с помощью этих волн мы получаем подавляющее количество информации об окружающем мире.

Что такое электромагнитная волна? Какова ее природа, механизм распространения, свойства? Существуют ли общие закономерности, характерные как для упругих, так и для электромагнитных волн?

Уравнения Максвелла и волновое уравнение

Электромагнитные волны интересны тем, что первоначально они были «открыты» Максвеллом на бумаге. Основываясь на предложенной им системе уравнений, Максвелл показал, что электрическое и магнитное поля могут существовать в отсутствие зарядов и токов, распространяясь в виде волны со скоростью 3∙10 8 м/с. Спустя почти 40 лет предсказанный Максвеллом материальный объект – ЭМВ – был обнаружен Герцем экспериментально.

Уравнения Максвелла являются постулатами электродинамики, сформулированными на основе анализа опытных фактов. Уравнения устанавливают связь между зарядами, токами и полями – электрическим и магнитным. Обратимся к двум уравнениям.

1. Циркуляция вектора напряженности электрического поля по произвольному замкнутому контуру l пропорциональна скорости изменения магнитного потока через поверхность, натянутую на контур (это закон электромагнитной индукции Фарадея):

(1)

Физический смысл этого уравнения – меняющееся магнитное поле порождает электрическое поле .

2. Циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру l пропорциональна скорости изменения потока вектора электрической индукции через поверхность, натянутую на контур:

(2)

Физический смысл этого уравнения – магнитное поле порождаетcя токами и меняющимся электрическим полем .

Даже без каких-либо математических преобразований этих уравнений понятно: если в какой-то точке меняется электрическое поле, то в соответствии с (2) возникает магнитное поле. Это магнитное поле, изменяясь, порождает в соответствие с (1) электрическое поле. Поля взаимно индуцируют друг друга, они уже не связаны с зарядами и токами!

Более того, процесс взаимного индуцирования полей будет распространяться в пространстве с конечной скоростью, то есть возникает электромагнитная волна. Для того, чтобы доказать факт существования в системе волнового процесса, в котором колеблется величина S, необходимо получить волновое уравнение

Рассмотрим однородный диэлектрик с диэлектрической проницаемостью ε и магнитной проницаемостью μ. Пусть в этой среде существуют магнитное поле . Для простоты будем полагать, что вектор напряженности магнитного поля располагается вдоль оси ОY и зависит только от координаты z и времени t: .

Записываем уравнения (1) и (2) с учетом связи между характеристиками полей в однородной изотропной среде: и :

Найдем поток вектора через прямоугольную площадку KLMN и циркуляцию вектора по прямоугольному контуру KLPQ ( KL = dz, LP= KQ = b, LM = KN = a)

Очевидно, что поток вектора через площадку KLMN и циркуляция по контуру KLPQ отличны от нуля. Тогда циркуляция вектора по контуру KLMN и поток вектора через поверхность KLPQ тоже отличны от нуля. Такое возможно только при условии, что при изменении магнитного поля возникло электрическое поле , направленное вдоль оси ОX.

Вывод 1: При изменении магнитного поля возникает электрическое поле, напряженность которого перпендикулярна индукции магнитного поля .

С учетом сказанного система уравнений перепишется

После преобразований получаем:

Продифференцируем первое уравнение (1.1) по координате z, второе уравнение (2.1) – по времени t:

Электрическое поле, порождаемое меняющимся магнитным полем, подчиняется волновому уравнению! Это означает, что возникшее электрическое поле подчиняется законам распространения волн.

Нетрудно видеть, что если продифференцировать первое уравнение (1.1) по времени t, второе уравнение (2.1) — по координате z , получим уравнение

Магнитное поле тоже подчиняется волновому уравнению, причем волна бежит в том же направлении, что и волна .

Дата добавления: 2018-09-25 ; просмотров: 3460 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

2.6. Электромагнитные волны

Любой колебательный контур излучает энергию. Изменяющееся электрическое поле возбуждает в окружающем пространстве переменное магнитное поле, и наоборот. Математические уравнения, описывающие связь магнитного и электрического полей, были выведены Максвеллом и носят его имя. Запишем уравнения Максвелла в дифференциальной форме для случая, когда отсутствуют электрические заряды () и токи (j = 0):

Величины и — электрическая и магнитная постоянные, соответственно, которые связаны со скоростью света в вакууме соотношением

Постоянные и характеризуют электрические и магнитные свойства среды, которую мы будем считать однородной и изотропной.

В отсутствие зарядов и токов невозможно существование статических электрического и магнитного полей. Однако переменное электрическое поле возбуждает магнитное поле, и наоборот, переменное магнитное поле создает электрическое поле. Поэтому имеются решения уравнений Максвелла в вакууме, в отсутствие зарядов и токов, где электрические и магнитные поля оказываются неразрывно связанными друг с другом. В теории Максвелла впервые были объединены два фундаментальных взаимодействия, ранее считавшихся независимыми. Поэтому мы говорим теперь об электромагнитном поле.

Колебательный процесс в контуре сопровождается изменением окружающего его поля. Изменения, происходящие в окружающем пространстве, распространяются от точки к точке с определенной скоростью, то есть колебательный контур излучает в окружающее его пространство энергию электромагнитного поля.

Электромагнитная волна — это распространяющееся в пространстве электромагнитное поле, в котором напряженность электрического и индукция магнитного полей изменяются по периодическому закону.

При строго гармоническом изменении во времени векторов и электромагнитная волна называется монохроматической.

Получим из уравнений Максвелла волновые уравнения для векторов и .

Волновое уравнение для электромагнитных волн

Как уже отмечалось в предыдущей части курса, ротор (rot) и дивергенция (div) — это некоторые операции дифференцирования, производимые по определенным правилам над векторами. Ниже мы познакомимся с ними поближе.

Возьмем ротор от обеих частей уравнения

При этом воспользуемся доказываемой в курсе математики формулой:

где — введенный выше лапласиан. Первое слагаемое в правой части равно нулю в силу другого уравнения Максвелла:

Получаем в итоге:

Выразим rotB через электрическое поле с помощью уравнения Максвелла:

и используем это выражение в правой части (2.93). В результате приходим к уравнению:

и вводя показатель преломления среды

запишем уравнение для вектора напряженности электрического поля в виде:

Сравнивая с (2.69), убеждаемся, что мы получили волновое уравнение, где vфазовая скорость света в среде:

Взяв ротор от обеих частей уравнения Максвелла

и действуя аналогичным образом, придем к волновому уравнению для магнитного поля:

Полученные волновые уравнения для и означают, что электромагнитное поле может существовать в виде электромагнитных волн, фазовая скорость которых равна

В отсутствие среды (при ) скорость электромагнитных волн совпадает со скоростью света в вакууме.

Основные свойства электромагнитных волн

Рассмотрим плоскую монохроматическую электромагнитную волну, распространяющуюся вдоль оси х:

Возможность существования таких решений следует из полученных волновых уравнений. Однако напряженности электрического и магнитного полей не являются независимыми друг от друга. Связь между ними можно установить, подставляя решения (2.99) в уравнения Максвелла. Дифференциальную операцию rot, применяемую к некоторому векторному полю А можно символически записать как детерминант:

Подставляя сюда выражения (2.99), зависящие только от координаты x, находим:

Дифференцирование плоских волн по времени дает:

Тогда из уравнений Максвелла следует:

Отсюда следует, во-первых, что электрическое и магнитное поля колеблются в фазе:

Далее, ни у , ни у нет компонент параллельных оси х:

Иными словами и в изотропной среде,

электромагнитные волны поперечны: колебания векторов электрического и магнитного полей происходят в плоскости, ортогональной направлению распространения волны.

Тогда можно выбрать координатные оси так, чтобы вектор был направлен вдоль оси у (рис. 2.27):

Рис. 2.27. Колебания электрического и магнитного полей в плоской электромагнитной волне

В этом случае уравнения (2.103) приобретают вид:

Отсюда следует, что вектор направлен вдоль оси z:

Иначе говоря, векторы электрического и магнитного поля ортогональны друг другу и оба — направлению распространения волны. С учетом этого факта уравнения (2.104) еще более упрощаются:

Отсюда вытекает обычная связь волнового вектора, частоты и скорости:

а также связь амплитуд колебаний полей:

Отметим, что связь (2.107) имеет место не только для максимальных значений (амплитуд) модулей векторов напряженности электрического и магнитного поля волны, но и для текущих — в любой момент времени.

Итак, из уравнений Максвелла следует, что электромагнитные волны распространяются в вакууме со скоростью света. В свое время этот вывод произвел огромное впечатление. Стало ясно, что не только электричество и магнетизм являются разными проявлениями одного и того же взаимодействия. Все световые явления, оптика, также стали предметом теории электромагнетизма. Различия в восприятии человеком электромагнитных волн связаны с их частотой или длиной волны.

Шкала электромагнитных волн представляет собой непрерывную последовательность частот (и длин волн) электромагнитного излучения. Теория электромагнитных волн Максвелла позволяет установить, что в природе существуют электромагнитные волны различных длин, образованные различными вибраторами (источниками). В зависимости от способов получения электромагнитных волн их разделяют на несколько диапазонов частот (или длин волн).

На рис. 2.28 представлена шкала электромагнитных волн.

Рис. 2.28. Шкала электромагнитных волн

Видно, что диапазоны волн различных типов перекрывают друг друга. Следовательно, волны таких длин можно получить различными способами. Принципиальных различий между ними нет, поскольку все они являются электромагнитными волнами, порожденными колеблющимися заряженными частицами.

Уравнения Максвелла приводят также к выводу о поперечности электромагнитных волн в вакууме (и в изотропной среде): векторы напряженности электрического и магнитного полей ортогональны друг другу и направлению распространения волны.

http://www.femto.com.ua/articles/part_1/0560.html – Волновое уравнение. Материал из Физической Энциклопедии.

http://elementy.ru/trefil/24 – Уравнения Максвелла. Материал из «Элементов».

http://telecomclub.org/?q=node/1750 – Уравнения Максвелла и их физический смысл.

http://principact.ru/content/view/188/115/ – Кратко об уравнениях максвелла для электромагнитного поля.

Эффект Доплера для электромагнитных волн

Пусть в некоторой инерциальной системе отсчета К распространяется плоская электромагнитная волна. Фаза волны имеет вид:

Наблюдатель в другой инерциальной системе отсчета К’, движущейся относительно первой со скоростью V вдоль оси x, также наблюдает эту волну, но пользуется другими координатами и временем: t’, r’. Связь между системами отсчета дается преобразованиями Лоренца:

Подставим эти выражения в выражение для фазы , чтобы получить фазу волны в движущейся системе отсчета:

Это выражение можно записать как

где и — циклическая частота и волновой вектор относительно движущейся системы отсчета. Сравнивая с (2.110), находим преобразования Лоренца для частоты и волнового вектора:

Для электромагнитной волны в вакууме

Пусть направление распространения волны составляет в первой системе отсчета угол с осью х:

Тогда выражение для частоты волны в движущейся системе отсчета принимает вид:

Это и есть формула Доплера для электромагнитных волн.

Если , то наблюдатель удаляется от источника излучения и воспринимаемая им частота волны уменьшается:

Если , то наблюдатель приближается к источнику и частота излучения для него увеличивается:

При скоростях V 2 (солнечная постоянная). Найдем среднюю амплитуду колебаний E0 вектора электрической напряженности в солнечном излучении. Вычислим амплитуды колебаний напряженности магнитного поля H0 и вектора магнитной индукции B0 в волне.

Ответ находим сразу из уравнений (3.127), где полагаем :

Электромагнитные волны поглощаются и отражаются телами, следовательно, они должны оказывать на тела давление. Рассмотрим плоскую электромагнитную волну, падающую нормально на плоскую проводящую поверхность. В этом случае электрическое поле волны возбуждает в теле ток, пропорциональный Е. Магнитное поле волны по закону Ампера будет действовать на ток с силой, направление которой совпадает с направлением распространения волны. В 1899 г. в исключительно тонких экспериментах П.И. Лебедев доказал существование светового давления. Можно показать, что волна, несущая энергию W, обладает и импульсом:

Пусть электромагнитная волна падает в вакууме по нормали на площадь А и полностью поглощается ею. Предположим, что за время площадка получила от волны энергию . Тогда переданный площадке импульс равен

На площадку действует со стороны волны сила

Давление Р, оказываемое волной, равно

Если средняя плотность энергии в волне равна , то на площадь А за время попадет энергия из объема и

Отсюда находим давление электромагнитной волны (света):

Если площадка идеально отражает всю падающую на нее энергию, то давление будет в два раза большим, что объясняется очень просто: одинаковый вклад в давление в этом случае дают как падающая, так и отраженная волны, в случае полностью поглощающей поверхности отраженной волны просто нет.

Пример 3. Найдем давление Р солнечного света на Землю. Используем значение солнечной постоянной из предыдущего примера. Искомое давление равно:

Пример 4. Найдем давление Р лазерного пучка на поглощающую мишень. Выходная мощность лазера N = 4.6 Вт, диаметр пучка d = 2.6 мм.

Уравнения Максвелла. Электромагнитные волны

2. Система уравнений Максвелла

3. ЭМ волны и их характеристики

4. Получение ЭМ волн – опыты Герца

5. Применение ЭМ волн

1. В реальной жизни не существует отдельно электрического и магнитного полей, есть единое электромагнитное поле.

Теория электромагнитного поля, на­чала которой заложил Фарадей, математически была заверше­на Максвеллом. Важной выдвинутой Максвеллом идеей, была мысль о симметрии во взаимо­зависимости электрического и магнитного полей. А именно, поскольку меняющееся во времени магнитное поле (dB/dt) со­здает электрическое поле, следует ожидать, что меняющееся во времени электрическое поле (dE/dt) создает магнитное поле.

Согласно теореме о циркуля­ции вектора Н

Применим эту теорему к случаю, когда предварительно заряженный плоский конденсатор разряжается через некоторое внешнее сопротивление (рис. а).

В качестве контура Г возьмем кривую, охватывающую провод. На контур Г можно натянуть разные поверхности, на­пример S и S’. Обе поверх­ности имеют «равные права», однако через поверхность S течет ток I, а через поверх­ность S’ нет тока. Поверхность S’ «прони­зывает» только электрическое поле. По теореме Гаусса поток вектора D сквозь замкнутую поверхность

D dS = q

Согласно определения плотности тока имеем

Сложим левые и правые части уравнений, получим

Из уравнения видно, что кроме плотности тока проводимости j имеется еще одно слагаемое dD/dt,размерность которого равна размерности плотности тока.

Максвелл назвал это слагаемое плотностью тока смещения:

Сумму же тока проводимости и тока смещения называют полным током.

Линии полного тока являются непрерывны­ми в отличие от линий тока проводимости. Токи проводимости, если они не замкнуты, замыкаются токами смещения.

Следует иметь в виду, что ток смещения эквивалентен току проводимости толь­ко в отношении способности создавать магнитное поле.

Токи смещения существуют лишь там, где меняется со вре­менем электрическое поле. В сущности он сам является переменным электрическим полем.

Открытие Максвеллом тока смещения — чисто теоретическое открытие, причем первосте­пенной важности.

2. С введением тока смещения макроскопическая теория электромагнитного поля была завершена. Открытие тока смещения (dD/dt) позволило Максвеллу создать единую теорию электриче­ских и магнитных явлений. Теория Максвелла не только объяс­нила все разрозненные явления электричества и магнетизма, но и предсказала ряд новых яв­лений, существование которых подтвердилось впоследствии.

В основе электромагнитной теории Максвелла лежат четыре фунда­ментальных уравнений электродинамики, называемые уравне­ниями Максвелла.

Эти уравнения в сжатой форме выражают всю совокупность наших сведений об электромагнитном поле.

Содержание этих уравнений заключается в следующем:

1. Циркуляция вектора Е по любому замкнутому контуру равна со знаком минус производной по времени от магнитного потока через любую поверхность, ограниченную данным конту­ром. При этом под Е понимается не только вихревое электриче­ское поле, но и электростатическое.

2. Поток вектора В сквозь произвольную замкнутую поверх­ность всегда равен нулю.

3. Циркуляция вектора Н по любому замкнутому контуру равна полному току (току проводимости и току смещения) че­рез произвольную поверхность, ограниченную данным конту­ром.

4. Поток вектора D сквозь любую замкнутую поверхность равен алгебраической сумме сторонних зарядов, охватываемых этой поверхностью.

Из уравнений Максвелла для циркуляции векторов Е и Н следует, что электрическое и магнитное поля нельзя рассмат­ривать как независимые: изменение во времени одного из этих полей приводит к появлению другого. Поэтому имеет смысл лишь совокупность этих полей, описывающая единое электро­магнитное поле.

Эти уравнения говорят о том, что электрическое поле может возникнуть по двум причинам. Во-первых, его источником яв­ляются электрические заряды, как сторонние, так и связан­ные. Во-вторых, поле Е образу­ется всегда, когда меняется во времени магнитное поле.

Эти же уравнения говорят о том, что магнитное поле В мо­жет возбуждаться либо движущимися электрическими заряда­ми (электрическими токами), либо переменными электриче­скими полями, либо тем и другим одновременно. Никаких ис­точников магнитного поля, подобных электрическим зарядам, в природе не существует, это следует из второго уравнения.

Значение уравнений Максвелла не только в том, что они выражают основные законы электро­магнитного поля, но и в том, что путем их решения (интегриро­вания) могут быть найдены сами поля Е и В.

Уравнения Максвелла обладают большей общностью, они справедливы и в тех случаях, когда существуют повер­хности разрыва — поверхности, на которых свойства среды или полей меняются скачкообразно.

Фундаментальные уравнения Максвелла еще не составляют полной системы уравнений элек­тромагнитного поля. Этих уравнений недостаточно для нахож­дения полей по заданным распределениям зарядов и токов. Их необходимо дополнить соотношениями, эти соотношения называют материаль­ными уравнениями.

Материальные уравнения наиболее просты в случае доста­точно слабых электромагнитных полей, сравнительно медленно меняющихся в пространстве и во времени. В этом случае для изотропных сред, материальные уравнения имеют следующий вид:

=εε0

=μμ0

=γ( + ст)

Уравнения Максвелла обладают рядом свойств.

1 свойства – линейности.

Уравнения Максвелла линейны, т.к. они содержат только пер­вые производные полей Е и В по времени и пространственным координатам и первые степени плотности электрических заря­дов и токов.

Свойство линейности уравнений Максвелла не­посредственно связано с принципом суперпозиции: если два ка­ких-нибудь поля удовлетворяют уравнениям Максвелла, то это относится и к сумме этих полей.

2 свойство – непрерывности.

Уравнения Максвелла содержат уравнение непрерывности, выражающее закон сохранения электрического заряда.

3 свойство – инвариантности.

Уравнения Максвелла выполняются во всех инерциальных системах отсчета. Они являются релятивистски инвариантны­ми. Это есть следствие принципа относительности, согласно ко­торому все инерциальные системы отсчета физически эквива­лентны друг другу. Факт инвариантности уравнений Максвел­ла подтверждается многочисленными опытными данными.

Уравнения Максвелла являются правильными реляти­вистскими уравнениями в отличие, например, от уравнений механики Ньютона.

4 свойство – симметрии.

Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это обусловлено тем, что в природе существу­ют электрические заряды, но нет зарядов магнитных.

В нейтральной од­нородной непроводящей среде уравнения Мак­свелла приобретают симметричный вид.

Из уравнений Максвелла сле­дует вывод о существовании принципиально нового физического явления: электромагнитное поле способно сущест­вовать самостоятельно — без электрических зарядов и токов. При этом изменение его состояния обязательно имеет волновой характер. Поля такого рода называют электромагнитными волнами.В вакууме они всегда распространяются со скоро­стью, равной скорости с.

Выяснилось также, что ток смещения (dD/dt) играет в этом явлении первостепенную роль. Именно его присутствие наряду с величиной dB/dt и означает возможность появления электро­магнитных волн. Всякое изменение во времени магнитного поля возбуждает поле электрическое, изменение же поля элек­трического, в свою очередь, возбуждает магнитное поле.

За счет непрерывного взаимопревращения или взаимодействия они и должны сохраняться — электромагнитное возмущение будет распространяться в пространстве.

Теория Максвелла не только предсказала возможность существования электромагнитных волн, но и позволила устано­вить все их основные свойства.

3. Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году.

Гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, то есть систему уравнений электромагнитного поля (уравнений Максвелла). Из теории Максвелла вытекает ряд важных выводов, одним из них явился вывод о существовании электромагнитных волн.

Электромагнитные волны поперечны – векторы перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис.).

Электромагнитные волны распространяются в веществе с конечной скоростью

,

где ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

4. Максвелл утверждал, что электромагнитные волны обладают свойствами отражения, преломления, дифракции и т.д. Но любая теория становится доказанной лишь после ее подтверждения на практике. Но в то время ни сам Максвелл, ни кто-либо другой еще не умели экспериментально получать электромагнитные волны. Это произошло только после 1888 года, когда Герц экспериментально открыл электромагнитные волны.

В результате экспериментов Герц создал источник электромагнитных волн, названный им «вибратором». Вибратор состоял из двух проводящих сфер (в ряде опытов цилиндров) диаметром 10-30 см, укрепленных на концах проволочного разрезанного посредине стержня. Концы половин стержня в месте разреза оканчивались небольшими полированными шариками, образуя искровой промежуток в несколько миллиметров.

Сферы подсоединялись ко вторичной обмотке катушки Румкорфа, являвшейся источником высокого напряжения.

Из теории Максвелла известно,

1)излучать электромагнитную волну может только ускоренно движущийся заряд,

2)что энергия электромагнитной волны пропорциональна четвертой степени ее частоты.

Понятно, что ускоренно заряды движутся в колебательном контуре, поэтому проще всего их использовать для излучения электромагнитных волн. Но надо сделать так чтобы частота колебаний зарядов стала как можно выше. Из формулы Томсона для циклической частоты колебаний в контуре следует, что для повышения частоты надо уменьшать емкость и индуктивность контура.

Чтобы уменьшить емкость C надо увеличивать расстояние между пластинами (раздвигать их, делать контур открытым) и уменьшать площадь пластин. Самая маленькая емкость, которая может получиться, — просто провод.

Чтобы уменьшить индуктивность L надо уменьшать число витков. В результате этих преобразований получим просто кусок провода или открытый колебательный контур ОКК.

Суть происходящих в вибраторе явлений заключается в следующем. Индуктор Румкорфа создает на концах своей вторичной обмотки очень высокое, порядка десятков киловольт, напряжение, заряжающее сферы зарядами противоположных знаков. В определенный момент в искровом промежутке вибратора возникает электрическая искра, делающая сопротивление его воздушного промежутка столь малым, что в вибраторе возникают высокочастотные затухающие колебания, длящиеся во все время существования искры. Поскольку вибратор представляет собой открытый колебательный контур, происходит излучение электромагнитных волн.

После огромной серии трудоемких и чрезвычайно остроумно поставленных опытов с использованием простейших, так сказать, подручных средств экспериментатор достиг цели. Удалось измерить длины волн и рассчитать скорость их распространения. Были доказаны

  • интерференции и поляризации волн.
  • измерена скорость электромагнитной волны

5. Впервые электромагнитные волны были использованы через семь лет после опытов Герца. 7 мая 1895 г. преподаватель физики офицерских минных классов А. С. Попов (1859—1906) на заседании Русского физико-химического общества продемонстрировал первый в мире радиоприемник, открывший возможность практического использования электромагнитных волн для беспроволочной связи, преобразившей жизнь человечества. Первая переданная в мире радиограмма содержала лишь два слова: «Генрих Герц». Изобретение радио Поповым сыграло огромную роль для распространения и развития теории Максвелла.

Электромагнитные волны сантиметрового и миллиметрового диапазонов, встречая на своем пути преграды, отражаются от них. Это явление лежит в основе радиолокации — обнаружения предметов (например, самолетов, кораблей и т. д.) на больших расстояниях и точного определения их положения. Помимо этого, методы радиолокации используются для наблюдения прохождения и образования облаков, движения метеоритов в верхних слоях атмосферы и т. д.

Для электромагнитных волн характерно явление дифракции — огибание волнами различных препятствий. Именно благодаря дифракции радиоволн возможна устойчивая радиосвязь между удаленными пунктами, разделенными между собой выпук­лостью Земли. Длинные волны (сотни и тысячи метров) применяются в фототелеграфии, короткие волны (несколько метров и меньше) применяются в телевидении для передачи изображений на небольшие расстояния (немногим больше пределов прямой видимости). Электромагнитные волны используются также в радио-геодезии для очень точного определения расстояний с помощью радиосигналов, в радиоастрономии для исследования радиоизлучения небесных тел и т. д. Полное описание применения электромагнитных волн дать практически невозможно, так как нет областей науки и техники, где бы они не использовались.

Для осуществления радио- и телевизионной связи используются электромагнитные волны с частотой от нескольких сотен тысяч герц до сотен мегагерц.

При передаче по радио речи, музыки и других звуковых сигналов применяют различные виды модуляции высокочастотных (несущих) колебаний. Суть модуляции заключается в том, что высокочастотные колебания, вырабатываемые генератором, изменяют по закону низкой частоты. В этом и заключается один из принципов радиопередачи. Другим принципом является обратный процесс — детектирование. При радиоприеме из принятого антенной приемника модулированного сигнала нужно отфильтровать звуковые низкочастотные колебания.
С помощью радиоволн осуществляется передача на расстояние не только звуковых сигналов, но и изображения предметов.


источники:

http://online.mephi.ru/courses/physics/optics/data/course/2/2.6.html

http://lektsii.org/14-59945.html