Решение уравнений методом гаусса зейделя в mathcad

1.2.3. Метод Зейделя (метод Гаусса-Зейделя, метод последовательных замещений)

Метод Зейделя представляет собой некоторую модификацию метода простой итерации. Основная его идея заключается в том, что при вычислении (k+1)-го приближения неизвестной xi учитываются уже вычисленные ранее (k+1) – е приближения неизвестных x1, х2, .

В этом методе, как и в методе простой итерации, необходимо привести систему к виду (3), чтобы диагональные коэффициенты были максимальными по модулю, и проверить условия сходимости. Если условия сходимости не выполняются, то нужно произвести элементарные преобразования (см. п. 4). Пусть дана система из трех линейных уравнений. Приведем ее к виду (3). Выберем произвольно начальные приближения корней: х1(0), х2(0), х3(0), стараясь, чтобы они в какой-то мере соответствовали искомым неизвестным. За нулевое приближение можно принять столбец свободных членов, т. е. х(0) = b

(т. е. x1(0)=b1, x2(0)=b2, x3(0)=b3). Найдем Первое приближение х(1) по формулам:

Следует обратить внимание на особенность метода Зейделя, которая состоит в том, что полученное в первом уравнении значение х1(l) сразу же используется во втором уравнении, а значения х1(1), х2(1) – в третьем уравнении и т. д. То есть все найденные значения х1(1) подставляются в уравнения для нахождения хi+1(1) [6, 8].

Рабочие формулы для метода Зейделя для системы трех уравнений имеют следующий вид:

Запишем в общем виде для системы n-уравнений рабочие формулы:

Заметим, что теорема сходимости для метода простой итерации справедлива и для метода Зейделя.

Зададим определенную точность решения e, по достижении которой итерационный процесс завершается, т. е. решение продолжается до тех пор, пока не будет выполнено условие для всех уравнений: где i=1,2,3,…,n.

Пример №2. Методом Зейделя решить систему с точностью e = 10-3:

1. Приведем систему к виду:

2. В качестве начального вектора х(0) возьмем элементы столбца свободных членов, округлив их значения до двух знаков после запятой:

3. Проведем итерации методом Зейделя. При k = 1

.

При вычислении х2(1) используем уже полученное значение х1(1) =

.

При вычислении х3(1) используем значения х1(1) и х2(1):

Наконец, используя значения х1(1), х2(1), х3(1), получаем:

Аналогичным образом ведем вычисления при k=2 и k=3. При k= 2:

Найдем модули разностей значений при k = 2:

Они меньше заданного числа e, поэтому в качестве решения возьмем: x1 = 0,80006, x2 = 1,00002, x3 = 1,19999, x4 = 1,40000.

Редактируйте фото онлайн бесплатно в редакторе фотографий

Теперь не нужно искать фотошоп, платить за услуги редактирования. В интернете это можно сделать самому и бесплатно. Онлайн фото-редактор поможет оригинально, качественно обработать необходимую фотографию.

Онлайн – редактор снимков, который объединил в себе наиболее востребованные и удобные функции редактирования.

Редактор не нужно загружать на компьютер или ноутбук. Пользователю достаточно посетить наш сайт и пользоваться программой в онлайн режиме.

Редактор на русском функционирует оперативно, позволяет оперативно редактировать габаритные снимки. Посетитель может выбрать любое фото с любых источников, в том числе из социальных сетей. После редактирования изображений их можно выставить обратно.

Редактор активно пользуются тысячи посетителей. Мы периодически совершенствуем функции редактора, делаем их эффективнее, увлекательнее, не сложнее в пользовании.

Редактор – многофункциональный редактор, где для обработки фотографий онлайн можно выбрать: разнообразные наклейки; текстуру; тексты; ретушь; оригинальные рамки; с эффектами; коллажи и др.

Редактирование фотографий абсолютно бесплатно, также можно бесплатно пользоваться этим фото в будущем.

Желаете без проблем и качественно отредактировать снимок прямо сейчас? онлайн редактор быстро исправит недостатки, и улучшит качество любого фото!

Человеку не подвластно время. Фотоснимок позволяет сохранить самые дорогие минуты нашей жизни в первозданном облике. Снимок улавливает и передает настроение, эмоции, все тонкие жизненные моменты. С iPhotor для рисования такие воспоминания станут более впечатлительными, яркими и незабываемыми!

Фотография – один из видов искусства. Сам процесс фотографирования простой, но он способен зафиксировать сложные моменты – красивое, хрупкое и быстротечное мгновенье. Это непросто передать с помощью обычных рисунков. Какого бы качества не были фото, редактор iPhotor преобразит даже самое обычные, снятые мобильным или простым фотоаппаратом.

Фотография лучше всего способна передать то, о чем вам хотелось рассказать людям. Фоторедактор iPhotor поможет поделиться с близкими впечатлениями, чувствами, отразит ваше вдохновение.

Возможности Редактора онлайн

Изменение размера, поворот, обрезка

Это самые востребованные операции в фото — редакторе, позволяющие вращать на 90 градусов снимок влево, вправо, по вертикали, горизонтали. Обработка делается оперативно и легко. Для обрезки выбираются границы обрезания фото.

Данное меню позволяет регулировать яркость, ретушь лица, коррекцию теней, светлых участков фото и т.п. Здесь также можно изменить оттенок, насыщенность, увеличить резкость картинок. Изменяя настройки каждого инструмента, можно наблюдать за изменениями в режиме онлайн.

Текст, стикеры, рамки

Графический редактор iPhotor позволяет создавать модные картинки, с прикольными стикерами, оригинальными фото рамками, текстовыми подписями.

Фото — эффекты, фото фильтры

С помощью редактора iPhotor можно бесплатно превратить цветное изображение в черно-белое, или наоборот, сделать виньетирование, наложение фото на фото, эффект пикселизации.

Воспользуйтесь уникальными возможностями фото — редактора онлайн прямо сейчас, сделайте вашу жизнь в реальности и на фото ярче!

Онлайн редактор приукрасит самые дорогие моменты вашей жизни!

Решение системы линейных алгебраических уравнений

Главная > Решение

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Лабораторная работа 3. Решение системы линейных алгебраических уравнений

Цель: Освоить технологию решения систем линейных алгебраических уравнений в интегрированной среде MathCad.

Задание: Решить систему линейных алгебраических уравнений

используя функцию lsolve;

методом простой итерации;

Методика выполнения задания:

Чтобы решить систему линейных алгебраических уравнений можно использовать несколько способов, причем технология нахождения параметров заданной системы линейных алгебраических уравнений на первых этапах аналогична, а именно, пусть задана система трех линейных алгебраических уравнений с тремя неизвестными, найдем ее решение. Для этого присвоим некоторой переменной М матрицу значений коэффициентов при неизвестных, воспользуемся динамической кнопкой , расположенной на панели инструментов Матрица, входящей в Математическую палитру интегрированной среды MathCad. Некоторой переменной V присвоим матрицу – столбец значений, расположенных в правой части системы алгебраических уравнений (то есть после знака =).

Определение решения системы матричным методом .

Используем представление системы линейных алгебраических уравнений в векторной форме, то есть A*X=B, где A – матрица значений при неизвестных, B – вектор свободных членов, а Х – вектор неизвестных, тогда исходя из этого уравнения Х=A -1 *B, задав последнюю формулу получим решение системы линейных алгебраических уравнений.

Определение решения методом Гаусса.

Сформируем расширенную матрицу системы Mr добавлением к матрице М справа матрицу V, используя встроенную функцию augment . Приведем расширенную матрицу к ступенчатому виду Mg, с помощью функции rref и выделим из нее блок матрицы – ее последний столбец, содержащий решение системы, с помощью функции submatrix .

Определение решения системы с помощью встроенной функции lsolve .

Активизируем кнопку Мастер функций на панели инструментов Стандартная и в категории Solving выберем встроенную функцию lsolve (M, V);

Результаты решения заданной системы линейных алгебраических уравнений отображены на рис. ().

l

Рис. Пример решения системы линейных уравнений

4. Решение системы линейных алгебраических уравнений методом простой итераций .

Введем переменную ORIGIN = 1 для нумерации столбцов и строк матрицы с 1 (по умолчанию ORIGIN=0). Сформируем матрицы α и β эквивалентной системы х= β + αх.

Для описания i и j воспользуемся кнопкой на панели Калькулятор, для нижних индексов – кнопкой на панели Матрицы.

Определим нормы матрицы α с помощью встроенных функций, используя кнопку на панели инструментов Стандартная.

Зададим начальное приближение, используя кнопку на панели Матрицы.

Вычислим 10 последовательных приближений и погрешности каждого из них.

Фрагмент рабочего документа MathCAD с соответствующими вычислениями приведен ниже на рис ().

Рис. Пример решения системы линейных уравнений методом простой итерации

5. Решение системы линейных уравнений методом Зейделя .

Сформируем матрицы α и β преобразованной системы х= β + α1х+ α2х и матрицу α= α1+ α2.

Фрагмент рабочего документа MathCAD с соответствующими вычислениями по методу Зейделя приведен ниже на рис ().

Рис. Пример решения системы линейных уравнений методом Зейделя


источники:

http://redactor-online.ru/post/%D0%BA%D0%B0%D0%BA+%D0%B2+%D0%BC%D0%B0%D1%82%D0%BA%D0%B0%D0%B4%D0%B5+%D1%80%D0%B5%D1%88%D0%B8%D1%82%D1%8C+%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%83+%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B9+%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D0%BE%D0%BC+%D0%B3%D0%B0%D1%83%D1%81%D1%81%D0%B0-%D0%B7%D0%B5%D0%B9%D0%B4%D0%B5%D0%BB%D1%8F

http://gigabaza.ru/doc/113527.html