Решение уравнений методом обратной матрицы примеры

Решение систем линейных алгебраических уравнений с помощью обратной матрицы.

Решение систем линейных алгебраических уравнений (СЛАУ) с помощью обратной матрицы (иногда этот способ именуют ещё матричным методом или методом обратной матрицы) требует предварительного ознакомления с таким понятием как матричная форма записи СЛАУ. Метод обратной матрицы предназначен для решения тех систем линейных алгебраических уравнений, у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Суть метода обратной матрицы можно выразить в трёх пунктах:

  1. Записать три матрицы: матрицу системы $A$, матрицу неизвестных $X$, матрицу свободных членов $B$.
  2. Найти обратную матрицу $A^<-1>$.
  3. Используя равенство $X=A^<-1>\cdot B$ получить решение заданной СЛАУ.

Любую СЛАУ можно записать в матричной форме как $A\cdot X=B$, где $A$ – матрица системы, $B$ – матрица свободных членов, $X$ – матрица неизвестных. Пусть матрица $A^<-1>$ существует. Умножим обе части равенства $A\cdot X=B$ на матрицу $A^<-1>$ слева:

Так как $A^<-1>\cdot A=E$ ($E$ – единичная матрица), то записанное выше равенство станет таким:

Так как $E\cdot X=X$, то:

Перед переходом к чтению примеров рекомендую ознакомиться с методами вычисления обратных матриц, изложенными здесь.

Решить СЛАУ $ \left \ < \begin& -5x_1+7x_2=29;\\ & 9x_1+8x_2=-11. \end \right.$ с помощью обратной матрицы.

Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.

Найдём обратную матрицу к матрице системы, т.е. вычислим $A^<-1>$. В примере №2 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^<-1>$:

Теперь подставим все три матрицы ($X$, $A^<-1>$, $B$) в равенство $X=A^<-1>\cdot B$. Затем выполним умножение матриц в правой части данного равенства.

$$ \left(\begin x_1\\ x_2 \end\right)= -\frac<1><103>\cdot\left(\begin 8 & -7\\ -9 & -5\end\right)\cdot \left(\begin 29\\ -11 \end\right)=\\ =-\frac<1><103>\cdot \left(\begin 8\cdot 29+(-7)\cdot (-11)\\ -9\cdot 29+(-5)\cdot (-11) \end\right)= -\frac<1><103>\cdot \left(\begin 309\\ -206 \end\right)=\left(\begin -3\\ 2\end\right). $$

Итак, мы получили равенство $\left(\begin x_1\\ x_2 \end\right)=\left(\begin -3\\ 2\end\right)$. Из этого равенства имеем: $x_1=-3$, $x_2=2$.

Запишем матрицу системы $A$, матрицу свободных членов $B$ и матрицу неизвестных $X$.

Теперь настал черёд найти обратную матрицу к матрице системы, т.е. найти $A^<-1>$. В примере №3 на странице, посвящённой нахождению обратных матриц, обратная матрица была уже найдена. Воспользуемся готовым результатом и запишем $A^<-1>$:

$$ A^<-1>=\frac<1><26>\cdot \left( \begin 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end \right). $$

Теперь подставим все три матрицы ($X$, $A^<-1>$, $B$) в равенство $X=A^<-1>\cdot B$, после чего выполним умножение матриц в правой части данного равенства.

$$ \left(\begin x_1\\ x_2 \\ x_3 \end\right)= \frac<1><26>\cdot \left( \begin 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end \right)\cdot \left(\begin -1\\0\\6\end\right)=\\ =\frac<1><26>\cdot \left(\begin 6\cdot(-1)+(-5)\cdot 0+1\cdot 6 \\ 8\cdot (-1)+2\cdot 0+(-16)\cdot 6 \\ -12\cdot (-1)+(-3)\cdot 0+37\cdot 6 \end\right)=\frac<1><26>\cdot \left(\begin 0\\-104\\234\end\right)=\left(\begin 0\\-4\\9\end\right) $$

Итак, мы получили равенство $\left(\begin x_1\\ x_2 \\ x_3 \end\right)=\left(\begin 0\\-4\\9\end\right)$. Из этого равенства имеем: $x_1=0$, $x_2=-4$, $x_3=9$.

Естественно, что решение систем линейных уравнений с помощью обратной матрицы без применения специальных программ вроде Mathcad возможно лишь при сравнительно небольшом количестве переменных. Если СЛАУ содержит четыре и более переменных, то гораздо удобнее в таком случае применить метод Гаусса или метод Гаусса-Жордана.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи: А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.

X = x 1 x 2 ⋮ x n — столбец неизвестных,

B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :

A — 1 × A × X = A — 1 × B .

Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .

В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Решаем СЛАУ методом обратной матрицы:

2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X :
  • Находим определитель матрицы А :

d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25

d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :

А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,

А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,

А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,

А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,

А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,

А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,

А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,

А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,

А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :

А * = — 6 7 5 17 1 — 10 — 10 — 5 0

  • Записываем обратную матрицу согласно формуле:

A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,

  • Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:

X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1

Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1

Квадратные СЛАУ. Матричный метод решения

С помощью данного метода можно находить решение только для квадратных СЛАУ.

Матричный метод решения

Запишем заданную систему в матричном виде:

Если матрица $$A$$ невырождена, то тогда с помощью операций над матрицами выразим неизвестную матрицу $$X$$ . Операция деления на множестве матриц заменена умножением на обратную матрицу, поэтому домножим последнее равенство на матрицу $A^<-1>$ слева:

$$A^ <-1>A X=A^ <-1>B \Rightarrow E X=A^ <-1>B \Rightarrow$$ $$X=A^ <-1>B$$

Поэтому, чтобы найти неизвестную матрицу $$X$$ надо найти обратную матрицу к матрице системы и умножить ее справа на вектор-столбец свободных коэффициентов.

Данный метод удобно применять тогда, когда нужно решить много одинаковых систем с разными правыми частями.

Примеры решения систем уравнений

Задание. Найти решение СЛАУ $\left\<\begin 5 x_<1>+2 x_<2>=7 \\ 2 x_<1>+x_<2>=9 \end\right.$ матричным методом.

$$X=\left(\begin x_ <1>\\ x_ <2>\end\right)=A^ <-1>B=\left(\begin 1 & -2 \\ -2 & 5 \end\right) \cdot\left(\begin 7 \\ 9 \end\right)=$$ $$=\left(\begin -11 \\ 31 \end\right) \Rightarrow\left(\begin x_ <1>\\ x_ <2>\end\right)=\left(\begin -11 \\ 31 \end\right)$$

Две матрицы одного размера равны, если равны их соответствующие элементы, то есть в итоге имеем, что $x_<1>=-11, x_<2>=31$

Ответ. $x_<1>=-11, x_<2>=31$

Задание. Решить с помощью обратной матрицы систему $\left\<\begin 2 x_<1>+x_<2>+x_<3>=2 \\ x_<1>-x_<2>=-2 \\ 3 x_<1>-x_<2>+2 x_<3>=2 \end\right.$

Решение. Запишем данную систему в матричной форме:

где $A=\left(\begin 2 & 1 & 1 \\ 1 & -1 & 0 \\ 3 & -1 & 2 \end\right)$ — матрица системы, $X=\left(\beginx_ <1>\\ x_ <2>\\ x_<3>\end\right)$ — столбец неизвестных, $X=\left(\begin x_ <1>\\ x_ <2>\\ x_ <3>\end\right)$ — столбец правых частей. Тогда $X=A^ <-1>B$

Найдем обратную матрицу $X=A^<-1>$ к матрице $A$ с помощью союзной матрицы:

Здесь $\Delta=|A|$ — \lt a href=»formules_6_11.php» title=»Методы вычисления определителей матрицы: теоремы и примеры нахождения»>определитель матрицы $A$ ; матрица $\tilde$ — союзная матрица, она получена из исходной матрицы $A$ заменой ее элементов их алгебраическими дополнениями. Найдем $A$ , для этого вычислим алгебраические дополнения к элементам матрицы $A$ :

Определитель матрицы $A$

$$\Delta=\left|\begin 2 & 1 & 1 \\ 1 & -1 & 0 \\ 3 & -1 & 2 \end\right|=2 \cdot(-1) \cdot 2+1 \cdot(-1) \cdot 1+1 \cdot 0 \cdot 3-$$ $$-3 \cdot(-1) \cdot 1-(-1) \cdot 0 \cdot 2-1 \cdot 1 \cdot 2=-4 \neq 0$$


источники:

http://zaochnik.com/spravochnik/matematika/issledovanie-slau/matrichnyj-metod-reshenija-slau/

http://www.webmath.ru/poleznoe/formules_5_3.php