Решение уравнений на предел функции

Калькулятор Пределов. Вычисление Пределов Функций

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Что такое предел функции

В данной публикации мы рассмотрим одно из главных понятий математического анализа – предел функции: его определение, а также различные способы решения с практическими примерами.

Определение предела функции

Предел функции – величина, к которой стремится значение данной функции при стремлении ее аргумента к предельной для области определения точке.

Запись предела:

  • предел обозначается значком lim;
  • под ним добавляется, к какому значению стремится аргумент (переменная) функции. Обычно, это x , но не обязательно, например: “ x →1″;

Таким образом, финальная запись предела выглядит выглядит так (в нашем случае):

Читается как “предел функции при икс, стремящемся к единице”.

x →1 – это значит, что “икс” последовательно принимает значения, которые бесконечно приближаются к единице, но никогда с ней не совпадут (ее не достигнут).

Решение пределов

С заданным числом

Давайте решим рассмотренный выше предел. Для этого просто подставляем единицу в функцию (т.к. x →1):

Таким образом, чтобы решить предел, сперва пробуем просто подставить заданное число в функцию под ним (если икс стремится к конкретному числу).

С бесконечностью

В данному случае аргумент функции бесконечно возрастает, то есть “икс” стремится к бесконечности (∞). Например:

Если x →∞, то заданная функция стремится к минус бесконечности (-∞), т.к.:

  • 3 – 1 = 2
  • 3 – 10 = -7
  • 3 – 100 = -97
  • 3 – 1000 – 997 и т.д.

Другой более сложный пример

Для того, чтобы решить этот предел, также, просто увеличиваем значения x и смотрим на “поведение” функции при этом.

Таким образом при “икс”, стремящемся к бесконечности, функция неограниченно растет.

С неопределенностью (икс стремится к бесконечности)

В данном случае речь идет про пределы, когда функция – это дробь, числитель и знаменатель которой представляют собой многочлены. При этом “икс” стремится к бесконечности.

Пример: давайте вычислим предел ниже.

Выражения и в числителе, и а знаменателе стремятся к бесконечности. Можно предположить, что в таком случае решение будет таким:

Однако не все так просто. Чтобы решить предел нам нужно сделать следующее:

1. Находим x в старшей степени для числителя (в нашем случае – это два).

2. Аналогичным образом определяем x в старшей степени для знаменателя (тоже равняется двум).

3. Теперь делим и числитель, и знаменатель на x в старшей степени. В нашем случае в обоих случаях – во второй, но если бы они были разные, следовало бы взять наибольшую степень.

4. В получившемся результате все дроби стремятся к нулю, следовательно ответ равен 1/2.

С неопределенностью (икс стремится к конкретному числу)

И в числителе, и в знаменателе представлены многочлены, однако, “икс” стремится к конкретному числу, а не к бесконечности.

В данном случае условно закрываем глаза на то, что в знаменателе стоит ноль.

Пример: Найдем предел функции ниже.

1. Для начала подставим в функцию число 1, к которому стремится “икс”. Получаем неопределенность рассматриваемого нами вида.

2. Далее раскладываем числитель и знаменатель на множители. Для этого можно воспользоваться формулами сокращенного умножения, если они подходят, или решить квадратное уравнение.

В нашем случаем корнями выражения в числителе () являются числа 1 и 1,5. Следовательно его можно представить в виде: .

Знаменатель () изначально является простым.

3. Получаем вот такой видоизмененный предел:

4. Дробь можно сократить на ():

5. Остается только подставить число 1 в выражение, получившееся под пределом:

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение пределов.

Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции. Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс вычисления предела.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите выражение функции
Вычислить предел

Немного теории.

Предел функции при \( x \to x_0 \)

Пусть функция \( f(x) \) определена на некотором множестве \(X\) и пусть точка \( x_0 \in X \) или \( x_0 \notin X \)

Возьмем из \(X\) последовательность точек, отличных от \(x_0\) :
\(x_1 \;, \; x_2 \;, \; x_3 \;, . \; x_n \; , \; . \tag <1>\) сходящуюся к \(x^*\).
Значения функции в точках этой последовательности также образуют числовую последовательность
\( f(x_1) \;, \; f(x_2) \;, \; f(x_3) \;, . \; f(x_n) \; , \; . \tag <2>\) и можно ставить вопрос о существовании ее предела.

Определение. Число \(A\) называется пределом функции \(f(x)\) в точке \( x = x_0 \) (или при \( x \to x_0 \) ), если для любой сходящейся к \(x_0\) последовательности (1) значений аргумента \(x\), отличных от \(x_0\) соответствующая последовательность (2) значений функции сходится к числу \(A\).

Символически это записывается так:
$$ \lim_ < f(x)>= A $$

Функция \(f(x)\) может иметь в точке \(x_0\) только один предел. Это следует из того, что последовательность \( \left\ < f(x_n) \right\>\) имеет только один предел.

Существует другое определение предела функции.

Определение Число \(A\) называется пределом функции \(f(x)\) в точке \(x_0\), если для любого числа \( \varepsilon > 0 \) существует число \( \delta > 0 \) такое, что для всех \( x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \( |x-x_0| 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей».
Второе определение называют определением «на языке \( \varepsilon — \delta \)».
Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи.

Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \( \varepsilon — \delta \)» — определением предела функции по Коши.

Предел функции при \( x \to x_ <0->\) и при \( x \to x_ <0+>\)

В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом.

Определение Число \(A\) называется правым (левым) пределом функции \(f(x)\) в точке \(x_0\), если для любой сходящейся к \(x_0\) последовательности (1), элементы \(x_n\) которой больше (меньше) \(x_0\), соответствующая последовательность (2) сходится к \(A\).

Символически это записывается так:
$$ \lim_> f(x) = A \; \left( \lim_> f(x) = A \right) $$

Можно дать равносильное определение односторонних пределов функции «на языке \( \varepsilon — \delta \)»:

Определение число \(A\) называется правым (левым) пределом функции \(f(x)\) в точке \(x_0\), если для любого \( \varepsilon > 0 \) существует \( \delta > 0 \) такое, что для всех \(x\), удовлетворяющих неравенствам \( x_0 0) (\exists \delta > 0) (\forall x, \; x_0 0) (\exists \delta > 0) (\forall x, \; x_0 -\delta

Предел функции при \( x \to \infty \), при \( x \to -\infty \) и при \( x \to +\infty \)

Кроме рассмотренных понятий предела функции при \( x \to x_0 \) и односторонних пределов существует также понятие предела функции при стремлении аргумента к бесконечности.

Определение. Число \(A\) называется пределом функции \(f(x)\) при \( x \to \infty \), если для любой бесконечно большой последовательности (1) значений аргумента соответствующая последовательность (2) значений функции сходится к \(A\).

Символическая запись:
$$ \lim_ f(x) = A $$

Определение. Число \(A\) называется пределом функции \(f(x)\) при \( x \to +\infty \; (x \to -\infty) \) , если для любой бесконечно большой последовательности значений аргумента, элементы \(x_n\) которой положительны (отрицательны), соответствующая последовательность значений функции сходится к \(A\).

Символическая запись:
$$ \lim_ f(x) = A \; \left( \lim_ f(x) = A \right) $$

Теоремы о пределах функций

Определение предела функции «на языке последовательностей» дает возможность перенести доказанные выше теоремы о пределах последовательностей на функции. Покажем это на примере двух теорем.

Теорема. Пусть функции \(f(x)\) и \(g(x)\) имеют в точке \(x_0\) пределы \(B\) и \(C\). Тогда функции \( f(x) \pm g(x) \; , \; f(x) \cdot g(x) \) и \( \frac \) (при \( C \neq 0 \) ) имеют в точке \(x_0\) пределы, равные соответственно \( B \pm C \; , \; B \cdot C \), и \( \frac \).

Теорема. Пусть функции \( f(x) \; , \; g(x) \) и \( h(x) \) определены в некоторой окрестности точки \(x_0\), за исключением, быть может, самой точки \(x_0\), и функции \( f(x) \; , \; h(x) \) имеют в точке \(x_0\) предел, равный \(A\), т.е. $$ \lim_ f(x) = \lim_ h(x) = A $$
Пусть, кроме того, выполняются неравенства \( f(x) \leqslant g(x) \leqslant h(x) \). Тогда $$ \lim_ g(x) = A $$

Теорема Лопиталя. Если $$ \lim_ f(x) = \lim_ g(x) = 0 $$ или \(\infty \), \(f(x)\) и \(g(x)\) дифференцируемы в окрестности \(x_0\) , и \( g'(x) \neq 0 \) в окрестности \(x_0\) , и существует $$ \lim_ \frac $$ то существует $$ \lim_ \frac = \lim_ \frac $$

Т.е. теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.
Теорема Лопиталя позволяет раскрывать неопределённости вида \( \frac<0> <0>\) и \( \frac<\infty> <\infty>\).


источники:

http://microexcel.ru/predel-funktsii/

http://www.math-solution.ru/math-task/limits