Решение уравнений нестандартными способами исследовательская работа

Решение уравнений нестандартными способами исследовательская работа

    Главная
  • Список секций
  • Математика
  • Нестандартные способы решения квадратных уравнений

Нестандартные способы решения квадратных уравнений

Автор работы награжден дипломом победителя III степени

Введение

Математическое образование, получаемое в школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений.

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Сила теории уравнений в том, что она не только имеет теоретическое значение для познания естественных законов, но и служит конкретным практическим целям.

Актуальность темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, люди находят ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.). Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе в 9 классе, а также 10 и 11 и при сдаче экзаменов.

Цель: Изучить стандартные и нестандартные способы решения квадратных уравнений

Задачи

  1. Изложить наиболее известные способы решения уравнений
  2. Изложить нестандартные способы решения уравнений
  3. Сделать вывод

Объект исследования: квадратные уравнения

Предмет исследования: способы решения квадратных уравнений

Методы исследования:

  • Теоретические: изучение литературы по теме исследования;
  • Анализ: информации полученной при изучении литературы; результатов полученных при решении квадратных уравнений различными способами.
  • Сравнение способов на рациональность их использования при решении квадратных уравнений.

Глава 1.Квадратные уравнения и стандартные способы решения

1.1.Определение квадратного уравнения

Квадратным уравнением называется уравнение вида ax 2 + bx + c = 0, где х – переменная, а, b и с– некоторые числа, причем, а ≠ 0.

Числа а, b и с — коэффициенты квадратного уравнения. Число а называют первым коэффициентом, число b– вторым коэффициентом и число c – свободным членом.

Полное квадратное уравнение — это квадратное уравнение, в котором присутствуют все три слагаемых т.е. коэффициенты в и с отличны от нуля.

Неполное квадратное уравнение — это уравнение, в котором хотя бы один из коэффициентов в или, с равен нулю.

Определение 3. Корнем квадратного уравнения ах 2 + bх + с = 0 называют всякое значение переменной х, при котором квадратный трехчлен ах 2 + bх + с обращается в нуль.

Определение 4. Решить квадратное уравнение — значит найти все его

корни или установить, что корней нет.

Пример: – 7x + 3 =0

В каждом из уравнений вида a + bx + c = 0, где а ≠ 0, наибольшая степень переменной x – квадрат. Отсюда и название: квадратное уравнение.

Квадратное уравнение, в котором коэффициент при х2 равен 1, называют приведенным квадратным уравнением.

Пример

1.2.Стандартные способы решения квадратных уравнений

Решение квадратных уравнений с помощью выделения квадрата двучлена

Решение квадратного уравнения, в котором оба коэффициента при неизвестных и свободный член отличны от нуля. Такой способ решения квадратного уравнения называют выделением квадрата двучлена.

Разложение левой части уравнения на множители.

Решим уравнение х 2 + 10х — 24 = 0. Разложим левую часть на множители:

х 2 + 10х — 24 = х 2 + 12х — 2х — 24 = х(х + 12) — 2(х + 12) = (х + 12)(х — 2).

Следовательно, уравнение можно переписать так:(х + 12)(х — 2) = 0

Произведение множителей равно нулю, если по крайней мере, один из его множителей равен нулю.

Решение квадратного уравнения по формуле.

Дискриминант квадратного уравнения ax 2 + bx + c = 0 выражение b 2 – 4ас = D — по знаку которого судят о наличии у этого уравнения действительных корней.

Возможные случаи в зависимости от значения D:

  1. Если D>0, то уравнение имеет два корня.
  2. Если D= 0, то уравнение имеет один корень: х =
  3. Если D 2 + bx + c = 0.

Обозначим второй коэффициент буквой р, а свободный член буквой q:

х 2 + px + q = 0, тогда

Глава 2.Нестандартные способы решения квадратных уравнений

2.1.Решение с помощью свойств коэффициентов квадратного уравнения

Свойства коэффициентов квадратного уравнения – это такой способ решения квадратных уравнений, который поможет быстро и устно найти корни уравнения:

  1. Еслиа+ b+c=0, тоx1= 1,x2=

Пример. Рассмотрим уравнение х 2 +3х – 4= 0.

Проверим полученные корни с помощью нахождения дискриминанта:

Следовательно, если + b +c= 0, то x1 = 1, x2 =

  1. Еслиb =a+c, тоx1= -1,x2=

Пример. Рассмотрим уравнение 3х 2 +4х +1 = 0, a=3, b=4, c=1

Значит корнями этого уравнения являются –1 и . Проверим это с помощью нахождения дискриминанта:

D= b 2 – 4ас=4 2 – 4·3·1 = 16 – 12 = 4

2.2.Способ «переброски»

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Если а±b+c≠0, то используется прием переброски:

Применяя способ «переброски» получаем:

Таким образом, с помощью теоремы Виета получаем корни уравнения:

Однако корни уравнения необходимо поделить на 3 (то число, которое «перебрасывали»):

Значит, получаем корни: x1 = -1, x2 = .

2.3.Решение с помощью закономерности коэффициентов

  1. Если уравнениеax 2 + bx + c= 0, коэффициентb= (a2+1), и коэффициентc=a, то его корни равны x1 = a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 +10х +3 = 0.

Таким образом, корни уравнения: x1 = -3, x2 =

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=10 2 – 4·3·3 = 100 – 36 = 64

  1. Если уравнениеax 2 — bx + c= 0, коэффициентb= (a2+1), и коэффициентc=a, то его корни равны x1 = a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 — 10х +3 = 0.

Таким образом, корни уравнения: x1 = 3, x2 =

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=10 2 – 4·3·3 = 100 – 36 = 64

  1. Если уравнениеax 2 + bx — c= 0, коэффициентb= (a2-1), и коэффициентc=a, то его корни равны x1 = —a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 + 8х —3 = 0..

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=8 2 + 4·3·3 = 64 + 36 = 100

  1. Если уравнениеax 2 — bx — c= 0, коэффициентb= (a2-1), и коэффициентc=a, то его корни равны x1 = a, x2 =

Таким образом, решаемое уравнение должно иметь вид

Пример. Рассмотрим уравнение 3х 2 — 8х —3 = 0..

Таким образом, корни уравнения: x1 = 3, x2 = —

Проверим данное решение с помощью дискриминанта:

D= b 2 – 4ас=8 2 + 4·3·3 = 64 + 36 = 100

2.4.Решение с помощью циркуля и линейки

Предлагаю следующий способ нахождения корней квадратного уравнения ах 2 + bх + с = 0 с помощью циркуля и линейки (рис.6 ).

Допустим, что искомая окружность пересекает ось

Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

1) построим точки S (центр окружности) и A(0; 1);

2) проведем окружность с радиусом SA;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис.8б) в точке В(х1; 0), где х1 — корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра AS SB, R> б) AS=SB, R= в) AS 2 — 2х — 3 = 0 (рис.8).

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса SA, где А (0; 1).

2.5.Геометрический способ решения квадратных уравнений.

В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми.

Примеры.

1) Решим уравнение х 2 + 10х = 39.

В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.9).

Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD, достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25.

Площадь S квадрата ABCD можно представить как сумму площадей:

первоначального квадрата х 2 , четырех прямоугольников (4• 2,5х = 10х ) и четырех пристроенных квадратов (6,25• 4 = 25), т.е. S = х 2 + 10х + 25. Заменяя

х 2 + 10х числом 39, получим, что S = 39 + 25 = 64, откуда следует, что сторона квадрата ABCD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим:

2) А вот, например, как древние греки решали уравнение у 2 + 6у — 16 = 0.

Решение представлено на рис 10. где

у 2 + 6у = 16, или у 2 + 6у + 9 = 16 + 9.

Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой

один и тот же квадрат, а исходное уравнение у 2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = — 8 (рис. .

3) Решить геометрически уравнение у 2 — 6у — 16 = 0.

Преобразуя уравнение, получаем

На рис 11. находим «изображения» выражения у 2 — 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3. Значит, если к выражению у 2 — 6у прибавить 9, то получим площадь квадрата со стороной у — 3. Заменяя выражение у 2 — 6у равным ему числом 16,

получаем: (у — 3) 2 = 16 + 9, т.е. у — 3 = ± √25, или у — 3 = ± 5, где у1 = 8 и у2 = — 2.

Заключение

В ходе выполнения своей исследовательской работы я считаю, что с поставленной целью и задачами я справился, мне удалось обобщить и систематизировать изученный материал по выше указанной теме.

Нужно отметить, что каждый способ решения квадратных уравнений по-своему уникален. Некоторые способы решения помогают сэкономить время, что немаловажно при решении заданий на контрольных работах и экзаменах. При работе над темой я ставил задачу, выяснить какие методы являются стандартными, а какие нестандартными.

Итак, стандартные методы (используются чаще при решении квадратных уравнений):

  • Решение с помощью выделения квадрата двучлена
  • Разложение левой части на множители
  • Решение квадратных уравнений по формуле
  • Решение с помощью теоремы Виета
  • Графическое решение уравнений

Нестандартные методы:

  • Свойства коэффициентов квадратного уравнения
  • Решение способом переброски коэффициентов
  • Решение с помощью закономерности коэффициентов
  • Решение квадратных уравнений, с помощью циркуля и линейки.
  • Исследование уравнения на промежутках действительной оси
  • Геометрический способ

При этом следует заметить, что каждый способ обладает своими особенностями и границами применения.

Решение уравнений с использованием теоремы Виета

Достаточно легкий способ, дает возможность сразу увидеть корни уравнения, при этом легко находятся только целые корни.

Решение уравнений способом переброски

За минимальное количество действий можно найти корни уравнения, применяется совместно со способом теоремы Виета, при этом также легко найти только целые корни.

Свойства коэффициентов квадратного уравнения

Доступный метод для устного нахождения корней квадратного уравнения, но подходит только к некоторым уравнениям

Графическое решение квадратного уравнения

Наглядный способ решения квадратного уравнения, однако могут возникать погрешности при составлении графиков

Решение квадратных уравнений с помощью циркуля и линейки

Наглядный способ решения квадратного уравнения, но также могут возникать погрешности

Геометрический способ решения квадратных уравнений

Наглядный способ, похож на способ выделения полного квадрата

Решая уравнения разными способами, я пришел к выводу, что зная комплекс методов решения квадратных уравнений, можно решить любое уравнение, предлагаемое в процессе обучения.

При этом, следует заметить, что одним из более рациональных способов решения квадратных уравнений является способ «переброски» коэффициента. Однако самым универсальным способом можно считать стандартный способ решения уравнений по формуле, потому что данный способ позволяет решить любое квадратное уравнение, хотя иногда и за более длительное время. Также такие способы решения, как способ «переброски», свойство коэффициентов и теорема Виета помогаю сэкономить время, что очень важно при решении заданий на экзаменах и контрольных работах.

Думаю, что моя работа будет интересна учащимся 9-11 классов, а также тем, которые хотят научиться решать рационально квадратные уравнения и хорошо подготовиться к выпускным экзаменам. Также она будет интересна и учителям математики, за счет рассмотрения истории квадратных уравнений и систематизации способов их решения.

Список литературы

  1. Глейзер, Г.И. История математики в школе/ Г.И. Глейзер.-М.: Просвещение, 1982- 340с.
  2. Гусев, В.А. Математика. Справочные материалы/ В.А. Гусев, А.Г. Мордкович — М.: Просвещение, 1988, 372с.
  3. Ковалева Г. И., Конкина Е. В. «Функциональный метод решения уравнений и неравенств», 2014 г.
  4. Кулагин Е. Д. «300 конкурсных задач по математике», 2013 г.
  5. Потапов М. К. «Уравнения и неравенства. Нестандартные методы решения» М. «Дрофа», 2012 г.
  6. .Барвенов С. А «Методы решения алгебраических уравнений», М. «Аверсэв», 2006 г.
  7. Супрун В.П. «Нестандартные методы решения задач по математике» — Минск «Полымя», 2010г
  8. Шабунин М.И. «Пособие по математике для поступающих в вузы», 2005г.
  9. Башмаков М.И. Алгебра: учеб. для 8 кл. общеобразоват. учреждений. – М.: Просвещение, 2004. – 287с.
  10. Шаталова С. Урок – практикум по теме «Квадратные уравнения».- 2004.

Творческие проекты и работы учащихся

В процессе работы над индивидуальным проектом по математике «Нестандартные методы решения уравнений и неравенств» ученицей 10 класса школы была поставлена и реализована цель изучить новые методы решения уравнений и неравенств. Каждый из методов был описан и продемонстрирован отдельно.

Подробнее о проекте:

В готовом творческом и исследовательском проекте по математике «Нестандартные методы решения уравнений и неравенств» учащейся приведены характеристики таких методов решения уравнений, как метод разложения на множители, метод замены переменной, метод решения уравнений с помощью теоремы Виета и метод интервалов, а также продемонстрированы нестандартные методы решения алгебраических уравнений и неравенств, метод рационализации, учёт ОДЗ и метод мажорант.

Оглавление

Введение
1. Теория уравнений и неравенств.
1.1 Основные понятия теории уравнений и неравенств.
1.2 Методы решения уравнений и неравенств.
1.2.1 Метод разложения на множители.
1.2.2 Метод замены переменной.
1.2.3 Метод решения уравнений с помощью теоремы Виета.
1.2.4 Метод интервалов.
2. Нестандартные методы решения алгебраических уравнений и неравенств.
2.1 Метод рационализации.
2.2 Учёт ОДЗ.
2.3 Метод мажорант (оценки).
2.4 Использование свойств функций.
2.4.1 Использование ОДЗ.
2.4.2 Использование монотонности функции.
2.4.3 Использование графиков.
2.5 Некоторые искусственные способы решения алгебраических уравнений.
2.5.1 Угадывание корня уравнения.
3. Разработка интерактивного тренажера «Нестандартные методы решения уравнений и неравенств».
3.1 Анализ и характеристика сетевого сервиса, с помощью которого будет создаваться продукт.
3.2 Создание контента тренажёра.
3.3 Описание созданного продукта.
3.4 Апробация продукта.
Заключение
Список литературы

Введение

Объектом исследования являются уравнения и неравенства.

Предмет исследования: некоторые нестандартные методы решения уравнений и неравенств.

В начале работы над проектом была сформулирована гипотеза: благодаря новым методам решения уравнений и неравенств, удастся сократить количество шагов решения в алгоритме и снизить вероятность допущения ошибки. Исходя из этого вывода, была поставлена цель проекта: изучить новые методы решения уравнений и неравенств.

Продуктом проекта были выбраны дидактические материалы с алгоритмом решения уравнений и неравенств новыми методами и тренажёры для отработки заданий подобного типа. Для продуктивного и удобного использования тренажера необходимо установить критерии оценки продукта проекта:понятный и удобный интерфейс, наличие мобильной версии, возможность использования русского языка, возможность бесплатного использования ресурсов сетевого сервиса при создании и дальнейшем использовании тренажера, тиражируемость (возможность быстрого распространения (с помощью ссылок, QR-кодов и т.п.) и использования).

В процессе создания проекта были сформулированы некоторые задачи:

  1. Изучить всевозможные источники информации по данной теме, структурировать собранную информацию
  2. Провести опрос
  3. Разработать алгоритмы решения уравнений и неравенств определенным (нестандартным) способом
  4. Анализ имеющихся тренажёров, подобрать задания, решаемые нестандартным способом, решить их
  5. Создать тренажёр
  6. Апробировать продукт
  7. Провести опрос об эффективности продукта
  8. Собрать статистику
  9. Распространить продукт

Методы исследования, используемые при работе над проектом: анализ, обобщение, синтез, классификация, систематизация, сравнение, прототипирование.

Научная новизна: разработаны уникальные дидактические материалы

Теоретическая значимость: расширение представления о некоторых методах решения уравнений и неравенств.

Практическая значимость: продукт проекта может быть использован учениками при подготовке к ЕГЭ, а также учителями математики.

Социальная значимость: проект может помочь ученикам 9-11 классов при подготовке к экзамену.

Основные понятия теории уравнений и неравенств

Уравнение – равенство, содержащее в себе переменную, значение которой требуется найти.

Корень (решение) уравнения – это значение переменной, при котором уравнение обращается в верное числовое равенство.

Решить уравнение — найти его корни или доказать, что корней нет.

Неравенство – два числа или математических выражения, соединенных одним из знаков: , ≤, ≥.

Основные свойства уравнений:

  • Любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.
  • Обе части уравнения можно умножить или разделить на одно и то же число, не равное нулю.

Решение неравенства – то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство.

Решить неравенство – найти все его решения или установить, что их нет.

Методы решения уравнений и неравенств

Теперь, после перечисления основных понятий, следует вспомнить известные нам из школьной программы способы решения уравнений и неравенств.

Метод разложения на множители

Для разложения на множители используют формулы сокращённого умножения (ФСУ), вынесение общего множителя за скобку, способ группировки, деление многочлена на многочлен.

Суть данного метода в том, чтобы путем равносильных преобразований представить левую часть исходного уравнения, содержащую неизвестную величину в какой-либо степени, в виде произведения двух выражений, содержащих неизвестную величину в меньшей степени. При этом справа от знака равенства должен оказаться ноль.

Метод замены переменной

Цель данного метода в том, чтобы удачным образом заменить сложное выражение, содержащее неизвестную величину, новой переменной, в результате чего уравнение принимает более простой вид. Далее полученное уравнение решается относительно новой переменной, после чего происходит возврат к исходной переменной.

Метод решения уравнений с помощью теоремы Виета

Важно. Не ко всем квадратным уравнениям имеет смысл использовать эту теорему. Применять теорему Виета имеет смысл только к приведённым квадратным уравнениям.

Приведенное квадратное уравнение – это уравнение, в котором старший коэффициент «a = 1». В общем виде приведенное квадратное уравнение выглядит следующим образом: х2 + px + q = 0. разница с обычным общим видом квадратного уравнения ax2 + bx + c = 0 в том, что в приведённом уравнении x2 + px + q = 0 коэффициент а = 1.

Теорема Виета для приведённых квадратных уравнений «x2 + px + q = 0» гласит что справедливо следующее:

x1 · x2 = q, где x1 и x2 — корни этого уравнения.

Нестандартные методы решения алгебраических уравнений и неравенств. Метод рационализации

Приведем алгоритм решения уравнений и неравенств методом рационализации:

  • Нахождение ОДЗ уравнения/неравенства
  • Привести данное неравенство к стандартному виду: слева дробь (или произведение), справа – ноль.
  • Заменить выражения левой части на более простые, эквивалентные им по знаку.
  • Решить полученное неравенство, например, методом интервалов.

Учёт ОДЗ

Иногда знание ОДЗ позволяет доказать, что уравнение (или неравенство) не имеет решений, а иногда позволяет найти решение уравнения (или неравенства) непосредственно подстановкой чисел из ОДЗ.

  • Найти ОДЗ уравнения/неравенства.
  • Подставить значение ОДЗ в исходное уравнение/неравенство, чтобы проверить, является ли оно корнем.

Метод мажорант (оценки)

Метод мажорант также называют методом оценки левой и правой частей, входящих в уравнения и неравенства.

Мажорантой данной функции f(х) на множестве Р, называется такое число М, что либо f(х) ≤ М для всех х ϵ Р, либо f(х) ≥ М для всех х ϵ Р.

Мажоранты многих элементарных функции известны. Их нетрудно указать, зная область значений функции.

  • Определить монотонность и область определения функции (ООФ).
  • Методом подбора найти корень уравнения/неравенства.
  • Исходя из монотонности функции делаем вывод о количестве корней.

Использование графиков

При решении уравнений и неравенств иногда полезно рассмотреть эскиз графиков их правой и левой частей. Тогда этот эскиз графиков поможет выяснить, на какие множества надо разбить числовую ось, чтобы на каждом из них решение уравнения (или неравенства) было очевидно.

Обратим внимание, что эскиз графика лишь помогает найти решение, но писать, что из графика следует ответ, нельзя, ответ ещё надо обосновать.

  • Определить ОДЗ уравнения/неравенства.
  • Представить левую и правую части уравнения/неравенства как функции и построить их графики.
  • По графику определить решение уравнения/неравенства.
  • Доказать справедливость ответа.

Угадывание корня уравнения

Иногда внешний вид уравнения подсказывает, какое число является корнем уравнения.

  • Методом подбора определить корень уравнения.
  • Найти ОДЗ уравнения.
  • Привести многочлен к стандартному виду.
  • Определить остальные корни уравнения.

Разработка интерактивного тренажера «Нестандартные методы решения уравнений и неравенств»

В качестве продукта проекта был выбран интерактивный тренажер, который позволит практиковаться в решении уравнений и неравенств с помощью новых, нестандартных методов решения. Размещение тренажера на сетевой платформе позволит сделать данный продукт доступным для всех, кто хочет разобраться в этой теме.

Анализ и характеристика сетевого сервиса, с помощью которого будет создаваться продукт

При создании продукта были проанализированы следующие сетевые сервисы:

Платформы были проанализированы по критериям:

  • Понятный и удобный интерфейс сайта
  • Возможность составления разнотипных заданий, для создания интересного и разнообразного контента
  • Наличие мобильной версии
  • Возможность использования русского языка
  • Возможность бесплатного использования ресурсов сетевого сервиса при создании и дальнейшем использовании тренажера
  • Доступность (возможность быстрого распространения (с помощью ссылок, QR-кодов и т.п.) и использования)
  • В данной таблице приведены результаты оценки сетевых сервисов по выбранным критериям:

Исследовательская работа «Различные способы решения квадратных уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Нестандартные способы решения квадратных уравнений

Глава 1.Квадратные уравнения: из древности до наших дней 4

Глава 2. Тезаурус по теме.

2.1. Определение квадратного уравнения и его виды 8

2.2. Решение квадратного уравнения общеизвестными способами 9

Глава 3. Способы решения квадратных уравнений, отличные от традиционных

3.1. Метод выделения полного квадрата

3.2. Решения уравнений способом «переброски». 12

3.3. Учёт свойств коэффициентов квадратного уравнения…………………. 13

3.4. Решение квадратного уравнения графическим способом………………. 15

3.5. Решение квадратных уравнений с помощью циркуля и линейки………. 16

3.6. Решение квадратных уравнений с помощью номограммы………………..18

3.7. Геометрический способ решения квадратных уравнений…………………19

3.8.Решение уравнений с использованием теоремы Безу……………. 20

Глава 4.Разработка буклета памятки………………….…………………………..22

Нестандартные способы решения квадратных уравнений

Сегодня все пространство окружающее современного человека связано с математикой. А постоянные открытия в физике, технике и информационных технологиях говорят о том, что этот процесс постоянно растет . Поэтому решение многих практических задач сводится к различным уравнениям, и очень часто эти уравнения являются квадратными.

В школьном курсе рассматривается несколько типов квадратных уравнений, и способы их решения по формулам. Вместе с тем, современные научно—методические исследования показывают, что использование разнообразных методов и способов позволяет значительно повысить эффективность и качество изучения решений квадратных уравнений.

Выбор способа должен оставаться за учащимися. Каждый ученик должен уметь верно и главное рационально решать квадратные уравнения. Так как в некоторых случаях можно решать их устно, только для этого необходимо помнить алгоритм решения квадратных уравнений, который может пригодиться во время экзаменов (ОГЭ и ЕГЭ, учитывая ограниченность экзамена во времени), при поступлении в ВУЗы и различных жизненных ситуациях.

Таким образом, возникает необходимость изучения этих дополнительных способов решения. Все сказанное выше определяет актуальность проблемы выполненной работы.

Целью работы является выявление способов решения уравнений второй степени, отличных от изучаемых в школьной программе и оценка их с точки зрения удобства применения.

1)Познакомиться с историческими фактами, связанными с данным вопросом.

2)Описать технологии различных существующих способов решения уравнений второй степени.

3)Провести анализ этих способов, сравнить их.

4)Привести примеры применения различных способов решения уравнений.

5)Составить буклет-памятку со всеми изученными способами решения квадратных уравнений.

Объект исследования: уравнения второй степени.

Предмет исследования: способы решения уравнений второй степени.

ГЛАВА 1. Квадратные уравнения: из древности до наших дней

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000лет до нашей эры вавилоняне.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, как неполных, так и, полные квадратные уравнения. Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VIIв.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме.В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XIIв. Бхаскары.

Обезьянок резвых стая

Власть поевши, развлекалась.

Их в квадрате часть восьмая

На поляне забавлялась,

А двенадцать по лианам

Стали прыгать, повисая.

Сколько ж было обезьянок

Ты скажи мне, в этой стае?

Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений.

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

«Квадраты равны числу», т. е. ax 2 = c (5 x 2 =80).

«Корни равны числу», т. е. ax = c (4х=20).

«Квадраты и числа равны корням», т. е. ax 2 + c = bx (х 2 + 10х=39).

«Квадраты и корни равны числу», т. е. ax 2 + bx = c ( x 2 +21=10 x ).

«Корни и числа равны квадратам», т. е. bx + c = ax 2 (3х+4=х 2 ).

Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми, как и все математики до XVIIв., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Трактат Аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники 16-17вв. и частично 18.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х 2 + b х=с, при всевозможных комбинациях знаков коэффициентов b , c , было сформулировано в Европе в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была сформулирована им впервые в 1591г.

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета ещё далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

Глава 2. Тезаурус по теме.

2.1. Определение квадратного уравнения и его виды.

1) Алгоритм – точное предписание (правило) о выполнении в определенном порядке указанных операций (шагов алгоритма), позволяющее решать все задачи определенного вида.

2) Квадратным уравнением называют уравнения вида:

ax 2 + bx c =0 , где a , b , c – некоторые действительные числа.

а – первый или старший коэффициент;

b – второй коэффициент или коэффициент при х;

с – свободный член.

3) Квадратное уравнение называют приведенным , если старший коэффициент равен 1;квадратное уравнение называют непереведенным , если старший коэффициент отличается от 1.

4)Корнем квадратного уравнения называют всякое значение переменной х, при котором квадратный трехчлен обращается в нуль.

5) Решить квадратное уравнение – значит найти все его корни или установить, что корней нет.

2.2. Решение квадратного уравнения общеизвестными способами.

Разложение левой части уравнения на множители.

Разложение на множители уравнения – это процесс нахождения таких членов или выражений, которые, будучи перемноженными, приводят к начальному уравнению.

Решим уравнение х 2 +10х-24=0.

Разложим левую часть уравнения на множители:

Х 2 +10х-24=х 2 +12х-2х-24=х(х+12)-2(х+12)=(х+12)(х-2).

Следовательно, уравнение можно переписать так:

Так как произведение равно нулю, то по крайней мере один из множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при х=2,а уравнение х 2 +10х-24=0.

Решение квадратного уравнений по формуле

Умножим обе части уравнения ax 2 + bx + c =0 , а ≠ 0, на 4а и, следовательно, имеем :

4а 2 х 2 +4а bc +4 ac =0

((2 ax ) 2 +2 ax ∙ b + b 2 )- b 2 +4 ac =0

Выражение b 2 — 4 ac называют дискриминантом и обозначают D , причем

Если D >0, то уравнение ax 2 + bx + c =0 имеет два различных корня;

Если D =0, то два одинаковых корня;

Решение уравнений с использование теоремы Виета (прямой и обратной)

1)Как известно, приведенное квадратное уравнение имеет вид:

Его корни удовлетворяют теореме Виета , которая при а=1 имеет вид

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

А) Если свободный член q приведенного уравнения (1) положителен ( q > 0), то уравнение имеет два одинаковых по знаку корня и это зависит от второго коэффициента p .

Если p >0, то оба корня отрицательные, если p

х 2 -3 x +2=0; x 1 = 2 b x 2 =1, так как q = 2>0 и q = 2 > 0 и p = – 3

х 2 +8х + 7 = 0; х 1 = – 7 и х 2 = – 1, так как q = 7 > 0 и p = 8 >0.

Б) Если свободный член q приведенного уравнения (1) отрицателен (q 0. Например, х 2 + 4х – 5 = 0; х 1 = – 5 и х 2 = 1, так как q = – 5 0; х 2 – 8х – 9 = 0; х 1 = 9 и х 2 = – 1, так как q = – 9 0.

2) Теорема Виета для квадратного уравнения ax 2 + bx + c =0 имеет вид :

Справедлива теорема, обратная теореме Виета:

Если х 1 и х 2 таковы, что х 12 = — p , х 1 х 2 = q , то х 1 и х 2 – корни квадратного уравнения

Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней.

Решить уравнение x 2 -9x+14=0

Попробуем найти два числа х 1 и х 2 , такие, что

Такими числами являются 2 и 7. По теореме, обратной теореме Виета, они и служат корнями заданного квадратного уравнения.

Решить уравнение : x 2 +3x-28

Попробуем найти два числа х 1 и х 2 , такие, что

Нетрудно заметить, что такими числами будут — 7 и 4. Они и являются корнями данного уравнения.

Глава 3. Способы решения квадратных уравнений, отличные от традиционных

3.1. Метод выделения полного квадрата

Решим уравнение х 2 + 6х — 7 = 0

Выделим в левой части полный квадрат. Для этого запишем выражение х 2 + 6х в следующем виде: х 2 + 6х = х 2 + 2 • х • 3 .

В полученном выражении первое слагаемое — квадрат числа х, а второе — удвоенное произведение х и 3. Поэтому, чтобы получить полный квадрат, нужно прибавить 3 2 , т.к.

Преобразуем теперь левую часть уравнения

прибавляя к ней и вычитая 3 2 . Имеем:

х 2 +6х-7=х 2 +2• х • 3 +3 2 — 3 2 -7= (х+3) 2 — 9 -7= (х+3) 2 -16.

Таким образом, данное уравнение можно записать так:

(х+ 3) 2 -16 = 0, т.е. (х+ 3) 2 = 1б.

Следовательно, х + 3 = 4, х 1 = 1, или х +3 = -4 , х 2 = — 7.

3.2 Решение уравнений способом «переброски»

Рассмотрим квадратное уравнение

ах 2 +Ьх+ с= 0, а ≠ 0.

Умножая обе его части на а, получаем уравнение

а 2 х 2 + аЬх + ас = 0.

Пусть ах = у, откуда х = ; тогда приходим к уравнению

равносильному данному. Его корни у 1 и у 2 найдем с помощью теоремы Виета. Окончательно получим х 1 = и х 2 = . При этом способе коэффициент а умножается на свободный член, как 6ы «перебрасывается» к нему, поэтому его и называют способом «переброски» . Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

2х 2 — 11х + 15 = 0.

«Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

Согласно теореме у 1 = 6 х 1 = х 1 = 3

3.3. Учёт свойств коэффициентов квадратного уравнения

А. Пусть дано квадратное уравнение

ах 2 + Ьх + с = 0,а≠0.

1. Если, а + Ь + с = 0 (т.е. сумма коэффициентов равна нулю), то

Доказательство . Разделим обе части уравнения на а ≠ 0, получим приведённое квадратное уравнение: х 2 + х + = 0.

Согласно теореме Виета x 1 + x 2 = —

По условию, а + Ь + с = 0, откуда Ь = — a — с. Значит,

Получаем x 1 = 1, x 2 = , что и требовалось доказать.

2. Если, a — b + c = 0, или b = a + c , то x 1 = — 1, x 2 = — .

Доказательство. По теореме Виета

По условию, a — b + c = 0, откуда b = a + c . Таким образом,

т.е. х 1 = -1 и х 2 = , что и требовалось доказать.

1.Решим уравнение 345х 2 —137х — 208 = 0.

Решение. Так как а + b + с = 0 (345 — 137 — 208 = 0), то х 1 = 1, х 2 = = .

2. Решим уравнение 132 x 2 + 247 x + 115 = 0

Решение. Т.к. a – b + c = 0 (132 — 247 + 115 = 0 ), то x 1 = -1, x 2 = —

Б. Если второй коэффициент b = 2 k – четное число, то формулу корней

X 1,2 = можно записать в виде х 1,2 =

Решим уравнение 3 x 2 – 14 x + 16 = 0

Решение. Имеем : a = 3, b = — 14, c = 16, k = — 7;

D = k 2 – ac = (-7) 2 – 3 • 16 = 49 -48 =1, D > 0 , два различных корня ;

В. Приведенное уравнение х 2 + px + q = 0

Совпадает с уравнением общего вида, в котором a =1, p и c = q . Поэтому для приведенного квадратного уравнения формула корней

принимает вид: x 1,2 = , или x 1,2 = — 2 – q . (2).

Формулу (2) особенно удобно использовать, когда p – чётное число.

1. Решим уравнение х 2 – 14х – 15 = 0.

Решение. Имеем: х 1,2 = 7 ± = 7 ± = 7 ± 8

3 .4. Решение квадратного уравнения графическим способом

Если в уравнении : х 2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х 2 = — px – q .

Построим графики зависимости у = х2 и у = — px — q .

График первой зависимости – парабола, проходящая через начало координат.

График второй зависимости – прямая.

Возможны следующие случаи :

-прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

— прямая и парабола могут качаться (только одна общая точка), т.е. уравнение имеет одно решение;

-прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

Решим графически уравнение : х 2 — 3х — 4 = 0

Решение. Запишем уравнение в виде : х 2 = 3х + 4.

Построим параболу у = х 2 и прямую у = 3х + 4.

Прямую у = 3х + 4 можно построить по двум точкам М (0; 4) и N (3; 13).

Прямая и парабола пересекаются в двух точках А и В с абсциссами х 1 = -1 и х 2 = 4.

3.5. Решение квадратных уравнений с помощью циркуля и линейки

Графический способ решения квадратных уравнений с помощью параболы не всегда удобен. Если строить параболу по точкам, то требуется много времени, и при этом степень точность получаемых результатов невелика. Существует способ нахождения корней квадратного уравнения ах 2 + bх + с = 0 с помощью циркуля и линейки.

Допустим, что искомая окружность пересекает ось абсцисс в точках В(х 1 ; 0 ) и D (х 2 ; 0), где х 1 и х 2 — корни уравнения ах 2 + bх + с = 0, и проходит через точки А(0; 1) и С(0; c/a) на оси ординат. Тогда по теореме о секущих имеем OB • OD = OA • OC, откуда OC = OB • OD/ OA= х 1 х 2 / 1 = c/a.

Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

1) построим точки (центр окружности) и A(0; 1);

2) проведем окружность с радиусом SA;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

1) Радиус окружности больше ординаты центра (AS > SK, или R > a + c/2a), окружность пересекает ось Ох в двух точках В (х 1 ; 0) и D(х 2 ; 0), где х 1 и х 2 — корни квадратного уравнения ах 2 + bх + с = 0.

2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох в точке В (х 1 ; 0), где х 1 — корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра окружность не имеет общих точек с осью абсцисс, в этом случае уравнение не имеет решения.

Решим уравнение х 2 — 2х — 3 = 0

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса SA, где А (0; 1).

3.6. Решение квадратных уравнений с помощью номограмм

Это старый и незаслуженно забыты способ решения квадратных уравнений, помещенный на с.83 (см. Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990).

Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициент там определить корни уравнения.

Криволинейная шкала номограммы построена по формулам

Полагая ОС = р, ED = q, ОЕ = а (все в см.), из подобия треугольников САН и CDF получим пропорцию

откуда после подстановок и упрощений вытекает уравнение z 2 + pz + q = 0, причем буква z означает метку любой точки криволинейной шкалы.

Если дано полное квадратное уравнение, то его надо привести к приведенному квадратному уравнению z 2 + pz + q = 0

Затем второй коэффициент и свободный член из уравнения отметить на соответствующих осях p и q , полученные точки соединить прямой.

Прямая пересекает кривую шкалу в двух точках – корнях данного уравнения, если корни положительные.

Если уравнение имеет корни разного знака, то прямая пересечет кривую шкалу в одной точке – это положительный корень. Отрицательный корень находят, вычитая положительный корень из – p .

Если же корни отрицательные, то по номограмме находят два положительных корня t 1 и t 2 для уравнения z 2 – pz + q = 0, а для уравнения z 2 + pz + q = 0 корнями будут z 1 = — t 1 , z 2 = — t 2

1) Для уравнения z 2 — 9 z + 8 = 0 номограмма дает корни z 1 = 8,0 и z 2 = 1,0

2) Решим с помощью номограммы уравнение 2z 2 — 9z + 2 = 0.

Разделим коэффициенты этого уравнения на 2, получим уравнение:

Номограмма дает корни z 1 = 4 и z 2 = 0,5.

3) Для уравнения z 2 — 25z + 66 = 0 коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5t, получим уравнение t 2 — 5t + 2,64 = 0, которое решаем посредством номограммы и получим t 1 = 0,6 и t 2 = 4,4, откуда z 1 = 5t 1 = 3,0 и z 2 = 5t 2 = 22,0.

3.7. Геометрический способ решения квадратных уравнений

В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми. Уравнение х 2 + 10х = 39

В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39».

Строим квадрат со стороной х и на его сторонах – четыре прямоугольника высотой . В углах фигуры построим четыре квадрата со стороной . В углах фигуры построим четыре квадрата .

Подсчитаем площадь получившегося большого квадрата:

X 2 + 4 • • () 2 = x 2 + 10 x + () 2 • 4

По условию x 2 + 10 x = 39, т.е. площадь большого квадрата равна

39 + ( ) 2 • 4 = 39 + + 25 =64.

Значит, его сторона равна 8, тогда x + 2 • ( ) = 8, x = 3 (Ал–Хорезми не признавал отрицательных чисел)

А вот, например, как древние греки решали уравнение y 2 + 6 y – 16 = 0

Решение представлено на рис., где у 2 + 6у = 16, или у 2 + 6у + 9 = 16 + 9.

Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой один и тот же квадрат, а исходное уравнение у2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у 1 = 2, у 2 = — 8.

3.8. Решение уравнений с использованием теоремы Безу

Теорема Безу. Если уравнение a 0 x n + a 1 x n -1 … + a n -1 x + a n = 0, где все коэффициенты целые, имеет целые корни, то это делители свободный член.

Следствие 2: Если b является корнем многочлена f ( x ), то этот многочлен делится на ( x — b ) без остатка.

Теорема Безу даёт возможность, найдя один корень многочлена, искать далее корни многочлена, степень которого уже на единицу меньше.

Таким образом, один корень найден и далее находятся уже корни многочлена, степень которого на единицу меньше степени исходного многочлена. Иногда этим приёмом – он называется понижением степени – можно найти все корни заданного многочлена.

Решить квадратное уравнение: х 2 – 4х + 3 = 0

f ( x ) = x 2 – 4 x + 3

Делители свободного члена ±1, ±3.

Проверим 1, подставив в уравнение 1 – 4 + 3 = 0. Значит 1 – это корень данного уравнения. Тогда квадратный трёхчлен х 2 — 4х + 3 делится нацело на (х-1).

Разделим f ( x ) на ( x -1), получим:

Х 2 – 4х + 3 = (х-1)(х-3)

x – 1 = 0; х 1 = 1, или х-3=0, х 2 =3; Ответ. х 1 = 1, х 2 =3.

Человечество прошло длинный путь от незнания к знанию, непрерывно заменяя на этом пути неполное и несовершенное знание всё более полным и совершенным.

Уравнения – язык алгебры, квадратные уравнения – это фундамент, на котором построено величественное здание алгебры. Изученные способы решения квадратных уравнений будут применяться и при дальнейшем изучении математики, при решении уравнений, сводящихся к решению квадратных.

В ходе выполнения работы с поставленной целью и задачами я справилась, мне удалось обобщить и систематизировать изученный материал по выше указанной теме. Проанализировав все новые способы решения квадратных уравнений, стало очевидным, что нельзя однозначно сказать, какой именно метод наиболее удобен или совершенен. Некоторые ( такие как, решение с использованием теоремы Безу и решение с помощью циркуля и линейки) удобно применять, когда коэффициенты невелики, другие – допускают большие коэффициенты ( например, учёт коэффициентов): графический не всегда точен, а геометрический понятен, но громоздок. Можно сделать вывод , что все способы надо иметь в своем арсенале и применять их по мере необходимости с точки зрения рациональности решения.

Составление буклета-памятки, обобщить способы решения квадратных уравнений, которые не изучают в школе. Нужно отметить, что не все они удобны для решения, но каждый из них уникален. Некоторые способы решения помогают сэкономить время, что немаловажно при решении заданий на ОГЭ и ЕГЭ.

Данные буклеты я раздам одноклассникам и ученикам других классов. Они могут воспользоваться собранными в буклет-памятку материалами для изучения и закрепления рациональных способов решения квадратных уравнений. В дальнейшем я планирую провести опрос, насколько интересна информация, предложенная в буклете, и используют ли они данные способы для решения квадратных уравнений, если да, то какой способ они считают наиболее простым и понятным.

1.Брадис В.М. Четырёхзначные математические таблицы для средней школы.

Изд. 57-е. – М., Просвещение, 1990. С. 83.

2.Окунев А.К. Квадратные функции, уравнения и неравенства. Пособие для учителя. – М., Просвещение, 1972.

3.Пресман А.А. Решение квадратного уравнения с помощью циркуля и линейки. – М., Квант, № 4/72. С. 34.

4.Соломник В.С., Милов П.И. Сборник задач по алгебре и элементарными функциям. Пособие для учителя. Изд. 2-е. – М., Просвещение, 1970.


источники:

http://tvorcheskie-proekty.ru/node/3678

http://infourok.ru/issledovatelskaya-rabota-razlichnie-sposobi-resheniya-kvadratnih-uravneniy-1526037.html