Решение уравнений по т безу

Теорема Безу: нахождение остатка от деления многочлена на двучлен

В данной публикации мы рассмотрим теорему Безу, с помощью которой можно найти остаток от деления многочлена на двучлен, а также, научимся применять ее на практике для решения примеров.

Формулировка теоремы Безу

Остаток от деления многочлена P(x) на двучлен (x-a) равняется P(a) .

Следствие из теоремы:

Число a является корнем многочлена P(x) исключительно в том случае, если многочлен P(x) без остатка делится на двучлен (x-a) .

Из этого следствия вытекает следующее утверждение: множество корней многочлена P(x) тождественно множеству корней соответствующего уравнения P(x)=0 .

Решение примеров

Пример 1
Найдите остаток от деления многочлена 5x 2 – 3x + 7 на двучлен (x – 2) .

Решение
Чтобы найти остаток от деления, согласно теореме Безу, требуется найти значение многочлена в точке a (т.е. вместо x подставляем значение a , которое в нашем случае равняется числу 2).
5 ⋅ 2 2 – 3 ⋅ 2 + 7 = 21 .

Т.е. остаток равен 21.

Пример 2
Используя теорему Безу выясните, делится ли многочлен 3x 4 + 15x – 11 на двучлен (x + 3) без остатка.

Решение
В данном случае a = -3 . Подставляем это число вместо x в многочлен и получаем:
3 ⋅ (-3) 4 + 15 ⋅ (-3) – 11 = 187 .

Это значит, что деление без остатка невозможно.

Пример 3
Выясните, при каком значении y , многочлен x 23 + yx + 16 без остатка делится на двучлен (x + 1) .

Решение
Применив теорему Безу, находим нулевой остаток от деления:
(-1) 23 + y ⋅ (-1) + 16 = 0
-1 – y + 16 = 0
y = 15

Таким образом, при y , равном 15, остаток будет равен 0.

Алгебра и начало анализа. Теорема Безу. 11-й класс

Класс: 11

Презентация к уроку

Цель урока:

  • способствовать развитию навыков деления многочлена на многочлен и использованию схемы Горнера;
  • закрепить навыки работы в электронных таблицах OpenOffice.org Calc;
  • организовать деятельность учащихся по восприятию, осмысливанию и первичному запоминанию новых знаний;
  • разобрать и доказать теорему Безу при решении проблемной ситуации: можно ли разложить многочлен третьей степени на множители;
  • рассмотреть использование теорему Безу для решения уравнений высших степеней;
  • содействовать развитию логического мышления, внимания, речи и умения работать самостоятельно.

Тип урока: урок ознакомления с новым материалом.

Оборудование: мультимедиа проектор, презентация к уроку, компьютерный класс.

«Для того, чтобы совершенствовать ум, надо больше рассуждать, чем заучивать».
Декарт (1596 -1650). Французский математик, физик, филолог, философ.

Ход урока

I. Организационный момент

Наша задача сегодня в совместной деятельности подтвердить слова Декарта (слайд 1). Тема нашего урока (слайд 2) «Теорема Безу» настолько значима, что даже используется в заданиях ЕГЭ и различных олимпиадах. Теорема Безу облегчает решение многих заданий, содержащих уравнения высших степеней. К сожалению, она изучается только на профильном уровне.

II. Возникновение проблемной ситуации

На этом уроке мы научимся решать уравнения высших степеней, а алгоритм решения выведем сами.

Решить уравнение: x 3 — 2x 2 — 6x + 4=0 (Слайд 3). Возникает проблема: Мы понимаем, что было бы удобно представить левую часть уравнения в виде произведения, и так как произведение равно нулю, то приравнять к нулю каждый множитель. Для этого надо разложить многочлен 3-ей степени на множители. Но как? Можно ли сгруппировать или вынести общий множитель за скобку в нашем случае? (Нет).

III. Актуализация опорных знаний

Вспомним, как разложить на множители многочлен х 2 — 5х — 6? (Слайд 4).

(По формуле разложения на множители квадратного трехчлена:

ах 2 + bх + с = a(x – x1)(x-x2), где х1 и х2 корни трехчлена).

Найдите корни трехчлена двумя способами. Какими?

(по формуле корней квадратного уравнения и по теореме Виета).

Решают на доске от каждой группы по одному ученику. Остальные учащиеся в тетрадях. Получили: х 2 — 5х — 6 = (х — 6) (х + 1).

Это значит, что трехчлен делится на каждый из двучленов: х – 6 и х + 1.

Обратите внимание на свободный член нашего трехчлена и найдите его делители (±1, ±2, ±3, ±6).

Какие из делителей являются корнями трехчлена? (-1 и 6)

Какой вывод можно сделать? (Корни трехчлена являются делителями свободного члена).

IV. Выдвижение гипотезы

Так какой же одночлен поможет подобрать корни многочлена?

Р(х) = x 3 — 2x 2 — 6x + 4=0?

Выпишите его делители: ±1; ±2; ±4.

Найдите значения многочлена для каждого делителя. С помощью электронных таблиц и непосредственно:

Об уравнениях высших степеней

Как правило в физике, информатике и экономике мы сталкиваемся с простейшими линейными, или дробно-рациональными уравнениями, реже с квадратными. А что до уравнений третьей и четвёртой степени? Если вам интересно, то прошу под кат.

Для начала рассмотрим понятие уравнения высшей степени. Уравнением высшей степени, называется уравнение вида:


В этой статье я рассмотрю:

1. Кубические уравнения.
2. Возвратные кубические.
3. Применение схемы Горнера и теоремы Безу.
4. Возвратные биквадратные уравнения.

Кубические уравнения

Кубические уравнения, это уравнения, в которых у неизвестной при старшем члене степень равна 3. Кубические уравнения имеют следующий вид:

Решать такие уравнения можно по разному, однако мы воспользуемся знаниями базовой школы, и решим кубическое уравнение методом группировки:

В данном примере используется метод группировки, группируем первые два и последние два члена, получая равные скобки, снова выносим, получая уравнение из двух скобок.

Произведение равно нулю тогда, и только тогда, если хотя бы один из множителей равен нулю, на основании этого мы каждый множитель (скобку) приравниваем к нулю, получая неполное квадратное и линейное уравнения.

Также стоит отметить, что максимальное количество корней уравнения, равно степени неизвестной при главном члене, так в кубическом уравнении может быть не более трёх корней, в биквадратном (4-ой степени) не более четырёх корней и. т. д.

Возвратные кубические уравнения

Возвратные кубические уравнения имеют вид:

Возвратными они называются потому что коэффициенты будут зеркально повторяться. Подобные уравнения тоже решаются школьными методами, но чуть хитрее:

Сначала производится группировка, потом при помощи формул сокращённого умножения мы раскладываем получаемое на множители. Снова получаем 2 равные скобки, «выносим их». Получаем два множителя (скобки) и решаем их как два различных уравнения.

Теорема Безу и схема Горнера

Теорема Безу была открыта, как ни удивительно, Этьеном Безу, французским математиком, занимавшимся в основном алгеброй. Теорему Безу, можно сформулировать следующим образом:

Давайте разберёмся. P(x) — это какой-либо многочлен от x, (x — a) — это двучлен в котором a — это один из целых корней уравнения, который мы находим среди делителей свободного члена.

Три точки, это оператор обозначающий что одно выражение делится на другое. Из этого следует что найдя хотя бы один корень данного уравнения, мы сможем применить к нему эту теорему. Но зачем нужна эта теорема, каково её действие? Теорема Безу — это универсальный инструмент, если вы хотите понизить степень многочлена. Например, при её помощи, кубическое уравнение, можно превратить в квадратное, биквадратное, в кубическое и т. д.

Но одно дело понять, а как поделить? Можно конечно, делить и в столбик, однако этот метод доступен далеко не всем, да и вероятность ошибиться очень высока. Поэтому есть и иной путь, это схема Горнера. Её работу я поясню на примере. Предположим:

И так, нам дан многочлен, и мы возможно заранее нашли один из корней. Теперь мы рисуем небольшую табличку из 6 столбцов и 2 строк, в каждый столбец первой строки (кроме первого), мы вносим коэффициенты уравнения. А в первый столбец 2 строки мы вносим значение a (найденный корень). Потом первый коэффициент, в нашем случае 5, мы просто сносим вниз. Значения последующих столбиков мы рассчитываем так:

(Картинка позаимствована здесь)
Далее поступаем точно так же и с остальными столбцами. Значение последнего столбца (2 строки) будет остатком от деления, в нашем случае 0, если получается число отличное от 0, значит надо избрать другой подход. Пример для кубического уравнения:

Возвратные биквадратные уравнения

Выше мы так же рассматривали возвратные кубические уравнения, а теперь разберём биквадратные. Их общий вид:

В отличие от кубического возвратного уравнения, в биквадратном пары, относительно коэффициентов, есть не у всех, однако в остальном они очень схожи. Вот алгоритм решения таких уравнений:

Как видно, решать такие уравнения совсем не просто. Но я всё равно разберу и этот случай. Начинается решение с деления всего уравнения на x^2. Далее мы группируем, здесь я специально ввёл дополнительную строку для ясности. После этого мы совершаем хитрость, и вводим в первую скобку 2, которую мы сначала прибавляем, а после вычитаем, сумма всё равно не изменится, зато теперь мы можем свернуть эту скобку в квадрат суммы.

Уберём -2 из скобки, предварительно домножив его на a, после чего вводим новую переменную, t и получаем квадратное уравнение.

А теперь перейдём к примеру:

Основная часть так же как и в обобщённом алгоритме, делим на x^2, группируем, сворачиваем в полный квадрат, выполняем подстановку переменной и решаем квадратное уравнение. После этого полученные корни подставляем обратно, и решаем ещё 2 квадратных уравнения (с умножением на x).

Область применения

В виду своей громоздкости и специфичности уравнения высших степеней редко находят себе применение. Однако примеры всё же есть, уравнение Пуассона для адиабатических процессов в Физике.


источники:

http://urok.1sept.ru/articles/617776

http://habr.com/ru/post/484902/