Решение уравнений равных 0 9 класс

Виды уравнений и способы их решения в 9-м классе

Разделы: Математика

Перед уроком были изучены темы “Уравнения с одной переменной”, “Целые рациональные уравнения и основные методы решения целых рациональных уравнений”, “Дробно-рациональные уравнения”, “Уравнения с модулем и параметрами”.

За две недели до обобщающего урока на стенде “Готовься к экзамену” было предложено:

  1. Прорешать из экзаменационного сборника задания второго раздела (№ 71–101).
  2. Вопросы по теоретическому материалу.
  3. Примерное оформление экзаменационного задания.
  4. Сроки индивидуальных и групповых консультаций.

Вопросы по теоретическому материалу

  1. Определение уравнения с одним неизменным.
  2. Корень уравнения.
  3. Что значит решить уравнение?
  4. Определение области допустимых значений.
  5. Когда два уравнения являются равносильными?
  6. Когда одно уравнение является следствием другого?
  7. Какие тождественные преобразования приводят к равносильным уравнениям?
  8. Особенность тождественного преобразования “деление на выражение, содержащее переменную”.
  9. Виды уравнений, их стандартный вид, алгоритм решения.
  10. Основные методы решения уравнений с одним неизвестным.

а) учебник А-9 под ред. Н.Я. Виленкина, глава X, с. 157–189;
б) конспекты.

№ 93(1)
№ 5.60(а)
Галицкий, с. 51

если D = 0, то x = –3 при a = –3, но x = –3 не удовлетворяет условию, так как (x – 4)(x + 3) 0;

Среди найденных значений может быть появление посторонних корней, так как уравнение x² + (3 – a)x – 3a = 0 следствие исходного уравнения.

Чтобы x2 = a являлся корнем x 2 – 4 0, a – 4 0, a 4

x 2 + 3 0, то есть a – 3 0, a –3

Ответ: при a 4, a –3 корнем уравнения является x = a.

Задания к уроку подобраны с учетом подготовленности учащихся данного класса.

  • привести в систему знаний учащихся по теме;
  • повторить теорию решения уравнений;
  • выработать умение определить вид уравнения;
  • выразить наиболее рациональный способ решения данного уравнения;
  • формировать наблюдательность учащихся.

I. Организационный момент

Сообщение темы урока и его целей.

II. Повторение теории по решению уравнений

1. Что называется уравнением?

Ответ: Любое равенство вида некоторые функции называются уравнением с одной переменной (или с одной неизвестной).

2. Что называется корнем уравнения?

Ответ: Число a называется корнем (или решением) данного уравнения с одной переменной, если при подстановке числа a вместо x в обе части уравнения, получаем верное числовое неравенство, то есть при подстановке x = a обе части уравнения определены и их значения совпадают:

3. Что значит решить уравнение?

Ответ: Решить уравнение – это значит найти все его корни или доказать что их нет.

4. Как определяется область определения допустимых значений уравнения?

Ответ: ОДЗ называется пересечение множеств областей определения функций

5. Какие уравнения называются равносильными (эквивалентными)?

Ответ: Два уравнения называются равносильными, если все корни уравнения первого являются корнями второго и наоборот, все корни второго уравнения являются корнями первого.

6. А как определить уравнение следствие?

Ответ: Если все корни одного уравнения являются корнями второго уравнения, то второе уравнение называется следствием первого уравнения.

7. Какие тождественные преобразования приводят к равносильным уравнениям?

  • к обеим частям уравнения прибавить любую функцию, которая определена при всех значениях из ОДЗ. Следствие. Члены уравнения можно переносить из одной части уравнения в другую;
  • обе части уравнения умножить на любую функцию, определенную и отличную от нуля при всех допустимых значениях неизвестного. Также можно делить и умножать на число, отличное от нуля;
  • в обеих частях уравнения стоят функции, принимающие только неотрицательные значения, то при возведении в одну и ту же четную степень получаем уравнение, равносильное данному. Появлению “посторонних корней” приводят преобразования:
    а) приведение подобных членов – происходит расширение ОДЗ;
    б) сокращение дроби на выражение, содержащие неизвестное (тоже происходит расширение ОДЗ);
    в) умножение на выражение, содержащее неизвестное;
    г) освобождение дроби от знаменателя, содержащего неизвестное. Необходимо обязательно делить проверку или лучше перейти к смешанной системе.

8. Виды уравнений, их стандартный вид, алгоритм решения (в процессе решения).

Ответ:
а) Линейное;
б) квадратное;
в) уравнение высших порядков (биквадратным, возвратное, симметрическое);
г) уравнения содержащие модуль;
д) уравнение с параметром.]

9. Какие общие методы решения уравнений с одним неизвестным?

Ответ: Вынесение общего множителя (разложение на множители), замена переменной, использование ограниченности и монотонности функций, графически.

Понятие равносильности для нас понятие только вводится, и поэтому проведем тест, как же вы этим понятием владеете.

Тест рассчитан на 5–7 минут. Контрольные задания даются в двух вариантах. После окончания работы на доске вывешиваются контрольные ответы. За каждое правильно выполненное задание – 1 балл. После окончания работы ученик оценивает свою работу самостоятельно, затем разбираются неверные ответы (к заданиям предлагаются).

Корни всех приведенных уравнений находятся среди чисел –3, –2, 1, 2, 3. Укажите пары равносильных уравнений.

(x 2 – 6) 2 = x 2

(x – 1)(x 2 – 6) = (1 – x)x

(x – 2)(x 2 – 6) = –x(x – 2)

x 2 – 6 = x

(x 2 + x – 6)(x 2 – x – 6) = 0

x + 3 = 0

x – 2 = 0

(x – 1)(x – 2)(x + 3) = 0

Равносильные уравнения

Корни всех приведенных уравнений находятся среди чисел –2, –1, 1, 2. Укажите пары равносильных уравнений.

(x 2 – 2) 2 = x 2

(x – 1)(x 2 – 2) = x(x – 1)

(x – 2)(x 2 – 2) = x(x – 2)

x 2 – 2 = x

x + 1 = 0

(x 2 – 1)(x – 2) = 0

(x 2 – x – 2)(x 2 + x – 2) = 0

x – 2 = 0

Равносильные уравнения

VI. Решение задач

Ученик должен определить вид уравнения, алгоритм решения данного уравнения, обратить внимание на способы его решения, выбрать рациональный способ решения.

Задачи взяты из “Сборника задач по алгебре” для классов с углубленным изучением математики под редакцией М.Л. Галицкого.

1. Уравнение третьей степени, в стандартном виде. Метод решения – разложения на линейные множители (теорема Безу):

Так как это уравнение рациональное целое с целыми коэффициентами, то оно имеет целые корни, являющиеся делителями свободного члена: 21: 1; 3; 7; 21. x1 = 1 является корнем (убеждаемся подстановкой), поэтому многочлен левой части уравнения делится на двучлен х – 1.

Решим уравнение x² + 10x + 21 = 0. По теореме Виета корни: x2 = –3, x3 = –7, x1 = 1.

Как еще с помощью теоремы Безу можно было выполнить разложение на множители?

Ответ: Если множитель делится на x – 1 и на x + 3, то он делится и на их произведение.

Это уравнение четвертой степени. Метод решения – группировка. Если левая часть уравнения представлена в виде разложения на линейные множители, а в правой – число и выносящиеся: (x + a)(x + b)(x + b)(x + c) = A и a + b = c + d, в этом случае возможна группировка множителей.

Сделаем замену x² + x = t и получим уравнение

3. 5 – 12x³ + 14x² = 12x – 5, 5x² – 12x³ + 14x² – 12x + 5 = 0 возвратное уравнение членов степени. Так как x = 0 не является корнем данного уравнения, разделим почленно на x² и сгруппируем:

Сделаем замену:

4. – это дробно-рациональное уравнение, содержащее модуль.

Ответ: <0; 2; 4>

Алгоритм: а) находим нули модуля; б) дискриминант уравнения разбиваем на промежутки; в) раскрываем модуль на каждом из промежутков; г) выбираем ответ, учитывая данный промежуток; д) ответ – совокупность решений.

– это дробно-рациональное уравнение. Выделим квадрат разности:

Введем новую переменную и получим уравнение вида t² + 2t – 3 = 0. По теореме Виета корни этого уравнения t = 1 или t = –3.

6. ax² + 3ax – (a + 2) = 0 – это квадратное уравнение с параметром. При решении уравнения с параметрами необходимо выяснить, при каких значениях параметров уравнение имеет корни и сколько их в зависимости от параметров при которых это выражение действительно определяет корни уравнения, то есть найти при каком значении параметра: г) x – единственный корень.

При D > 0 уравнение имеет два различных действительных корня, то есть при

При D 4 – 133х³ + 48х² – 133х + 78 = 0.

5. Для каждого значения параметра а решить уравнение ax² – (2a + 7)x + a + 3 = 0.

6. Найдите все значения параметра b, при которых уравнение имеет ровно один корень.

7 * . Решить уравнение x 4 + 4х + 3 = 0.

2. Дается оценка работы учащихся на уроке, выставляются в журнал. Сообщается дата и время консультации перед итоговой контрольной работой по этой теме.

Решение уравнений равных 0 9 класс

Найдите корни уравнения .

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

Решите уравнение .

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

По теореме, обратной теореме Виета, сумма корней равна 1, а их произведение −6.

Тем самым, это числа −2 и 3.

Решите уравнение .

Если корней несколько, запишите их в ответ без пробелов в порядке возрастания.

Запишем уравнение в виде По теореме, обратной теореме Виета, сумма корней равна −3, а их произведение −4.

Дробно-рациональные уравнения

Что такое дробно-рациональные уравнения

Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

9 x 2 — 1 3 x = 0

1 2 x + x x + 1 = 1 2

6 x + 1 = x 2 — 5 x x + 1

Уравнения, которые не являются дробно-рациональными:

Как решаются дробно-рациональные уравнения

В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

Алгоритм действий при стандартном способе решения:

  1. Выписать и определить ОДЗ.
  2. Найти общий знаменатель для дробей.
  3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
  4. Записать уравнение со скобками.
  5. Раскрыть скобки для приведения подобных слагаемых.
  6. Найти корни полученного уравнения.
  7. Выполним проверку корней в соответствии с ОДЗ.
  8. Записать ответ.

Пример 1

Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

x x — 2 — 7 x + 2 = 8 x 2 — 4

Начать следует с области допустимых значений:

x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

Воспользуемся правилом сокращенного умножения:

x 2 — 4 = ( x — 2 ) ( x + 2 )

В результате общим знаменателем дробей является:

Выполним умножение каждого из членов выражения на общий знаменатель:

x x — 2 — 7 x + 2 = 8 x 2 — 4

x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

После сокращения избавимся от скобок и приведем подобные слагаемые:

x ( x + 2 ) — 7 ( x — 2 ) = 8

x 2 + 2 x — 7 x + 14 = 8

Осталось решить квадратное уравнение:

Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

Примеры задач с ответами для 9 класса

Требуется решить дробно-рациональное уравнение:

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

Определим область допустимых значений:

О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

x 2 + 7 x + 10 ≠ 0

D = 49 — 4 · 10 = 9

x 1 ≠ — 7 + 3 2 = — 2

x 2 ≠ — 7 — 3 2 = — 5

Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

— ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

2 x 2 + 9 x — 5 = 0

Потребуется решить квадратное уравнение:

2 x 2 + 9 x — 5 = 0

Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

Дано дробно-рациональное уравнение, корни которого требуется найти:

4 x — 2 — 3 x + 4 = 1

В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

4 \ ( x + 4 ) x — 2 — 3 \ ( x — 2 ) x + 4 — 1 \ ( x — 2 ) ( x + 4 ) = 0

4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

— x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

( x — 2 ) ( x + 4 ) ≠ 0

Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

— x 2 — x + 30 = 0 _ _ _ · ( — 1 )

Получилось квадратное уравнение, которое можно решить:

Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

Нужно решить дробно-рациональное уравнение:

x + 2 x 2 — 2 x — x x — 2 = 3 x

На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

x + 2 \ 1 x ( x — 2 ) — x \ x x — 2 — 3 \ ( x — 2 ) x = 0

x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

— x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

— x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

Корни квадратного уравнения:

x 1 = — 4 ; x 2 = 2

Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

Найти корни уравнения:

x 2 — x — 6 x — 3 = x + 2

Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

x 2 — x — 6 \ 1 x — 3 — x \ ( x — 3 ) — 2 \ ( x — 3 ) = 0

x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

Ответ: х — любое число, за исключением 3.

Требуется вычислить корни дробно-рационального уравнения:

5 x — 2 — 3 x + 2 = 20 x 2 — 4

На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

5 \ ( x + 2 ) x — 2 — 3 \ ( x — 2 ) x + 2 — 20 \ 1 ( x — 2 ) ( x + 2 ) = 0

5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

( x — 2 ) ( x + 2 ) ≠ 0

Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

Ответ: корни отсутствуют

Нужно найти корни уравнения:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

Начнем с определения ОДЗ:

— 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

( x — 3 ) x + x = x + 5

Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

x 1 · x 2 = — 10 x 1 + x 2 = 3

В этом случае подходящими являются числа: -2 и 5.

Второе значение не соответствует области допустимых значений.


источники:

http://oge.sdamgia.ru/test?theme=43

http://wika.tutoronline.ru/algebra/class/9/drobnoraczionalnye-uravneniya