Решение уравнений разложением на множители 8 класс

Решение уравнений методом разложения на множители

Решение уравнений разложения на множители (метод расщепления) – это способ решения уравнений при котором мы стремимся уравнение свести их к виду:

а затем каждую скобку приравнять к нулю и решить как отдельное уравнение.

Вынесем за скобку икс.

Разобьем уравнение на два простейших.

В первом корень уравнения уже понятен, во втором надо перенести \(5\) в правую сторону.

Решение методом разложения на множители основывается на простой идее:

В результате умножения ноль можно получить, только если один из множителей равен нулю.

Попробуйте придумать два числа, которые при умножении дают ноль. Вы убедитесь, что хотя бы одно из них обязательно должно быть нулем.

Этот метод решения уравнений один из самых популярных, поэтому освоить его очень важно для тех, кто планирует иметь четверки и пятерки. А для освоения этого метода, конечно, надо уметь раскладывать на множители как Бог: знать все формулы сокращенного умножения, легко выносить множители за скобки, уметь применять метод группировки и т.д. Подробнее о всех способах разложения на множители смотри здесь .

Пример(задание из ОГЭ). Решите уравнение \(x^3+4x^2-4x-16=0\).
Решение:

Перед нами кубическое уравнение.
Применим метод группировки: из первой пары слагаемых вынесем \(x^2\), а из второй – минус четверку.

Конспект урока по математике на тему «Уравнение, решение уравнений методом разложения на множители»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Выберите документ из архива для просмотра:

Выбранный для просмотра документ план-конспект урока.docx

( Урок для класса с углубленным изучением математики по учебнику Алгебра-8 Ю.Н. Макарычев и др. Содержит презентацию. Урок можно провести в общеобразовательном классе )

Тема: Уравнения, решение уравнений разложением на множители

Цель урока: Повторить и закрепить знания учащихся по теме «Решение уравнений разложением на множители»

-повторить правила решения уравнений методом разложения на множители;

-повторить с учащимися формулы сокращенного умножения;

— выработать прочные навыки по применению изученных правил на практике;

— развитие умений применять теоретические знания на практике;

— развивать у учеников навык решать уравнения методом разложения на множители;

— формирование познавательной потребности.

-воспитывать сознательное отношение к учебному труду, развивать интерес к математике, самостоятельность, прививать аккуратность и трудолюбие;

— воспитывать трудолюбие, аккуратность, самостоятельность

Тип урока: Урок обобщения и систематизации знаний

Оборудование: ПК, интерактивная доска, медиапроектор, раздаточный материал

Актуализация учебной деятельности учащихся

Применение изученных знаний в новых практических ситуациях

Подведение итогов урока

Учитель определяет готовность учащихся к уроку. Знакомит учащихся с планом урока, помогает учащимся определить цель (слайд 1).

Французская пословица гласит (слайд 2):

«Знания, которые не пополняются ежедневно, убывают с каждым днём»

Чем же мы пополним сегодня наши знания? Сегодня мы продолжим с вами повторение курса алгебры за 7 класс по теме: Уравнения, решение уравнений методом разложения на множители.

От того, как хорошо вы владеете навыками решения уравнений, зависят ваши успехи в изучении таких предметов как физика, химия, биология и, конечно же, геометрия и алгебра.

Поэтому, сегодня мы посвятим урок повторению. Во-первых, повторим, методы разложения многочлена на множители; во-вторых, повторим формулы сокращенного умножения и рассмотрим их применение для решения уравнений.

Записать в тетрадях тему урока «Уравнения, решение уравнений разложением на множители» (слайд 1). Заранее сказать об оценочных листах.

Актуализация учебной деятельности учащихся

Учитель: Начнем наш урок с повторения методов разложения многочлена на множители. Какие методы разложения на множители вы изучали?

Ответ учеников: метод вынесения общего множителя за скобку; метод группировки; применение формул сокращенного умножения.

Ученикам предлагается повторить все перечисленные методы при выполнении следующих заданий

1) Разложить на множители методом вынесения за скобку (4 ученика работают у доски, остальные на местах 1 вариант: а,в; 2 вариант: б,г)

+44 abc ;

в)

2) Разложить на множители методом группировки (4 ученика работают у доски, остальные на местах 1 вариант: а,в; 2 вариант: б,г)

3) Очень часто приведение многочлена к стандартному виду можно осуществить путём применения формул сокращённого умножения . Все они доказываются непосредственным раскрытием скобок и приведением подобных слагаемых. Формулы сокращённого умножения нужно знать наизусть (вспомнить с учащимися формулы и их названия) (слайд 6):

Квадрат суммы двух величин равен квадрату первой плюс удвоенное произведение первой на вторую плюс квадрат второй. (a+b) 2 =a 2 +2ab+b 2

Квадрат разности двух величин равен квадрату первой минус удвоенное произведение первой на вторую плюс квадрат второй. (a-b) 2 =a 2 -2ab+b 2

Произведение суммы двух величин на их разность равно разности их квадратов . (a+b)(a-b)=a 2 -b 2

Куб суммы двух величин равен кубу первой плюс утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй плюс куб второй. (a+b) 3 =a 3 +3a 2 b+3ab 2 +b 3

Куб разности двух величин равен кубу первой минус утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй минус куб второй. (a-b) 3 =a 3 -3a 2 b+3ab 2 -b 3

Предложить учащимся выполнить разложение многочлена на множители самостоятельно, применяя формулы сокращенного умножения с последующей самопроверкой (слайд 7):

Применение изученных знаний в новых практических ситуациях

Учитель: Предлагаю вспомнить ряд определений по теме «Уравнения»

Уравнение – это …, содержащее …, значение которого надо найти.

Решить уравнение – значит, все его …или доказать, что…

Корень уравнения – значение …, при котором уравнение обращается в верное… .

Уравнения, имеющие одни и те же корни, называются… .

Учитель: При решении уравнений мы наиболее часто применяем один из методов — метод разложения многочлена на множители.

Если в уравнении Р(х)=0 многочлен Р(х) разложить на множители и затем прировнять каждый множитель к 0, то решив получившиеся уравнения, находим корни уравнения Р(х)=0.

Итак, сегодня на уроке мы учимся решать уравнения, у которых левая часть раскладывается на множители, а правая часть равна нулю.

Задание: применяя различные методы разложения многочлена на множители решить уравнения (решение у доски с подробным комментарием уравнений а,в,д):

Самостоятельная работа: предложить учащимся самостоятельно решить уравнения б,г,е

Проверка выполнения работы.

(ученики обмениваются работами и проверяют работу соседа)

Сообщить критерии оценивания работ:

— верно решены все уравнения – оценка 5

— решены все уравнения, но есть ошибки, оценка 4

— решены два уравнения, оценка 3.

Ребята, поднимите руки те, кто получил 4 и 5 .

Подведение итогов урока

Подводим итоги работы на уроке, отвечая на вопросы:

Какую цель мы ставили у нас на уроке?

Удалось нам ее достичь?

Что сегодня на уроке мы повторили?

Что вы для себя усвоили?

Отметьте в оценочной карточке ваше отношение к уроку:

Я доволен уроком, мне очень понравилось.

Мне понравилось на уроке, но в моих знаниях есть пробелы.

Урок прошел для меня даром, ни чего нового я на нем не узнал. Все, это я знаю.

Я не доволен уроком, ничего не понял и как решать уравнения я не знаю.

Оценить работу учащихся, прокомментировать оценки.

Переходим к записи д/з, при этом получая инструкции по его выполнению, делая акцент на том, что ученик сам знает, на что ему следует обратить особое внимание (слайд 9).

Ваше домашнее задание состоит из двух небольших упражнений:

Решение уравнений, сводящихся к квадратным

Биквадратные уравнения

Биквадратным уравнением называется уравнение вида:

$$ ax^4+bx^2+c = 0, a \neq 0 $$

Алгоритм решения биквадратного уравнения

Шаг 1. Ввести новую переменную: $z = x^2 \ge 0$.

Переписать уравнение для новой переменной: $az^2+bz+c = 0$

Шаг 2. Решить полученное квадратное уравнение.

Если $D \gt 0$, $z_ <1,2>= \frac<-b \pm \sqrt> <2a>$. Проверить условие $z ≥ 0$, если положительных корней нет, решений нет, переход на шаг 4.

Если D = 0,$z_0 = -\frac<2a>$. Проверить условие $z \ge 0$, если корень отрицательный, решений нет, переход на шаг 4.

Если $D \lt 0$, решений нет, переход на шаг 4.

Шаг 3.Если после шага 2 остались положительные корни, найти x: $x = \pm \sqrt$.

Шаг 4. Работа завершена.

Шаг 1. $z = x^2 \ge 0, z^2+7z-30 = 0$

$z_1 = -10 \lt 0, z_2 = 3 \gt 0 $

Шаг 3. Находим корни из положительного $z: x_ <1,2>= \pm \sqrt<3>$

Метод разложения на множители

Решение уравнений, в которые переменная x входит с различными натуральными степенями и вещественными коэффициентами, по существу, является поиском корней многочлена.

Число $x_0$ называют корнем многочлена $P_n (x) = a_n x^n+a_ x^ + ⋯ + a_1 x+a_0$ если $P_n (x_0 ) = 0$.

Для многочлена $P_n$ (x) произвольной степени n справедливо следующее.

Если $x = x_0$ является корнем многочлена $P_n$ (x), то $P_n (x) = (x-x_0) P_ (x)$, где $P_ (x)$ — многочлен степени n-1.

Таким образом, разными способами находя корни и формируя скобки, можно постепенно добиваться понижения степени «оставшегося» многочлена, пока не будут найдены все корни.

При разложении многочлена

  • множители вида (x-a) называют линейными множителями ;
  • множители вида $ (x^2+bx+c)$, для которых $D \lt 0$, называют неприводимыми квадратичными множителями .

Любой многочлен $P_n$ (x) можно представить в виде конечного числа линейных и/или неприводимых квадратичных множителей.

Причём, такое представление единственно с точностью до порядка множителей.

Для разложения многочленов на множители применяются разные методы:

  • вынесение общего множителя за скобку (см. §19 справочника для 7 класса);
  • группировка (см. §20 справочника для 7 класса);
  • формулы сокращенного умножения (см. §25 справочника для 7 класса);
  • метод неопределённых коэффициентов;
  • выделение полного квадрата и т.п.

Решим уравнение $2x^3-x^2-8x+4 = 0$.

Раскладываем на множители: $x^2 (2x-1)-4(2x-1) = 0$

$$ (x^2-4)(2x-1) = 0 \Rightarrow (x-2)(x+2)(2x-1) = 0 $$

Корни уравнения: $x_1 = 2, x_2 = -2, x_3 = \frac<1><2>$

Метод замены переменной

Замена переменной – это уравнение, с помощью которого можно упростить исходное уравнение, и перейти к решению системы из двух более простых уравнений:

$Исходное \quad сложное \quad уравнение \iff <\left\< \begin Новая \quad переменная \quad (урав. \quad связи \quad со \quad старой \quad переменной \\ Исходное \quad урав. \quad в \quad «упрощ.» \quad виде \end \right.>$

Например, для биквадратных уравнений:

$$ ax^4+bx^2+c = 0 \iff <\left\< \begin z = x^2 \ge 0 \\ az^2+bz+c = 0 \end \right.> $$

Можно предложить аналогичные схемы для других уравнений:

$$ ax+b \sqrt+c = 0 \iff <\left\< \begin z = \sqrt \ge 0 \\ az^2+bz+c = 0 \end \right.> $$

И, в общем виде, для любой рациональной степени n:

$$ ax^<2n>+bx^n+c = 0 \iff <\left\< \begin z = x^n \\ az^2+bz+c = 0 \end \right.> , n \in \Bbb Q $$

В других случаях замена переменной не настолько очевидна.

Но при удачном выборе, этот метод очень упрощает задачу.

Раскроем скобки:$ x^2-x = \frac<24>$. Сделаем замену:

$$ z = \frac<24> \Rightarrow z(z-2) = 24 \Rightarrow z^2-2z-24 = 0 \Rightarrow (z-6)(z+4) = 0 \Rightarrow \left[ \begin z_1 = -4 \\ z_2 = 6 \end \right.$$

Возвращаемся к исходной переменной x:

$$ \left[ \begin x^2-x = -4 \\ x^2-x = 6 \end \right. \Rightarrow \left[ \begin x^2-x+4 = 0 \\ x^2-x-6 = 0 \end \right. \Rightarrow \left[ \begin D \lt 0, x \in \varnothing \\ (x-3)(x+2) = 0 \end \right. \Rightarrow \left[ \begin x_1 = -2 \\ x_2 = 3 \end \right. $$

При использовании метода замены переменной не забывайте возвращаться к исходной переменной.

Выделение полного квадрата

Метод выделения полного квадрата является одним из методов разложения на множители. Его идея – представить многочлен в виде разности квадратов двух других многочленов степенью пониже, и разложить разность на две скобки:

$$ P_n (x) = Q_k^2 (x)-R_m^2 (x) = (Q_k (x)-R_m (x))(Q_k (x)+R_m (x)) $$

Такое разложение не всегда возможно.

Рассмотрим выделение полного квадрата для квадратного трёхчлена:

$$ = a \Biggl(x+\frac <2a>\Biggr)^2 — \frac <4a>= a \Biggl(x+ \frac <2a>\Biggr)^2- \frac<4a>, D = b^2-4ac $$

Нами выделен полный квадрат $(x+\frac<2a>)^2$.

Данное выражение используется для построения и анализа графиков парабол (см. §28 данного справочника).

А его разложение на две линейные скобки, известное как теорема Виета (см. §26 данного справочника), возможно только при условии $D \ge 0$.

Решить уравнение $x^4+4x^2-1 = 0$

Выделим полный квадрат и разложим на множители:

$$ \left[ \begin x^2+2-\sqrt <5>= 0 \\ x^2+2+\sqrt <5>= 0 \end \right. \Rightarrow \left[ \begin x^2 = \sqrt <5>-2 \gt 0 \\ x^2 = -(2+\sqrt<5>) \lt 0 \end \right. \Rightarrow x_1,2 = \pm \sqrt<\sqrt<5>-2> $$

Примеры

Пример 1. Решите биквадратные уравнения:

Делаем замену: $2x^4+7x^2-4 = 0 \iff <\left\< \begin z = x^2 \ge 0 \\ 2z^2+7z-4 = 0 \end \right.>$

Решаем квадратное уравнение: $D = 7^2-4 \cdot 2 \cdot (-4) = 49+32 = 81 = 9^2$

$$ z = \frac<-7 \pm 9> <4>= \left[ \begin z_1 = -4 \lt 0 \\ z_2 = \frac<1> <2>\gt 0 \end \right. $$

Выбираем положительный z и возвращаемся к исходной переменной x:

Делаем замену: $(x+3)^4-10(x+3)^2+24 = 0 \iff <\left\< \begin z = (x+3)^2 \ge 0 \\ z^2-10z+24 = 0 \end \right.>$

Решаем квадратное уравнение: $z^2-10z+24 = 0 \Rightarrow (z-4)(z-6) = 0 \Rightarrow \left[ \begin z_1 = 4 \\ z_2 = 6 \end \right.$

Берём оба корня и возвращаемся к исходной переменной.

$$ \left[ \begin (x+3)^2 = 4 \\ (x+3)^2 = 6 \end \right. \Rightarrow \left[ \begin x+3 = \pm \sqrt <4>\\ x+3 = \pm \sqrt <6>\end \right. \Rightarrow \left[ \begin x_ <1,2>= -3 \pm 2 \\ x_ <3,4>= -3 \pm \sqrt <6>\end \right. \Rightarrow \left[ \begin x_1 = -5 \\ x_2 = -1 \\ x_ <3,4>= -3 \pm \sqrt <6>\end \right. $$

Пример 2. Решите уравнения аналогичные биквадратным:

Делаем замену: $x+4 \sqrt-60 = 0 \iff <\left\< \begin z = \sqrt \ge 0 \\ z^2+4z-60 = 0 \end \right.>$

Решаем квадратное уравнение: $ z^2+4z-60 = 0 \Rightarrow (z+10)(z-6) = 0 \Rightarrow \left[ \begin z_1 = -10 \\ z_2 = 6 \end \right.$

Выбираем положительный корень и возвращаемся к исходной переменной:

Делаем замену: $(x-1)^6-7(x-1)^3-8 = 0 \iff <\left\< \begin z = (x-1)^3 \\ z^2-7z-8 = 0 \end \right.>$

Решаем квадратное уравнение: $ z^2-7z-8 = 0 \Rightarrow (z+1)(z-8) = 0 \Rightarrow \left[ \begin z_1 = -1 \\ z_2 = 8 \end \right.$

При замене куба знак z может быть любым, берём оба корня и возвращаемся к исходной переменной.

$$ \left[ \begin (x-1)^3 = -1 \\ (x-1)^3 = 8 \end \right. \Rightarrow \left[ \begin x-1 = -1 \\ x-1 = 2 \end \right. \Rightarrow \left[ \begin x_1 = 0 \\ x_2 = 3 \end \right. $$

Пример 3. Решите уравнения с помощью замены переменной:

Заметим, что $(x+3)^2 = x^2+6x+9$. Получаем:

$$ (x^2+6x)^2-(x^2+6x+9) = 33 \Rightarrow (x^2+6x)^2-(x^2+6x)-42 = 0 $$

Решаем квадратное уравнение: $ z^2-z-42 = 0 \Rightarrow (z+6)(z-7) = 0 \Rightarrow \left[ \begin z_1 = -6 \\ z_2 = 7 \end \right.$

Берём оба корня и возвращаемся к исходной переменной.

$$ \left[ \begin x^2+6x = -6 \\ x^2+6x = 7 \end \right. \Rightarrow \left[ \begin x^2+6x+6 = 0 \\ x^2+6x-7=0 \end \right. \Rightarrow \left[ \begin D = 12, x = \frac<-6 \pm 2 \sqrt<3>> <2>\\ (x+7)(x-1) = 0 \end \right. \Rightarrow \left[ \begin x_ <1,2>= -3 \pm \sqrt <3>\\ x_3 = -7 \\ x_4 = 1 \end \right. $$

Делаем замену: $ \frac<4> + \frac<5> = 2 \iff \left[ \begin z = x^2+3 \ge 3 \\ \frac<4> + \frac<5> = 2 \end \right.$

Решаем уравнение относительно z:

$$ \frac<4> + \frac<5> = 2 \Rightarrow \frac<4(z+1)+5z> = \frac<2> <1>\Rightarrow 4(z+1)+5z = 2z(z+1) $$

$$ 2z^2+2z-9z-4 = 0 \Rightarrow 2z^2-7z-4 = 0 $$

$$ D = 7^2-4 \cdot 2 \cdot (-4) = 49+32 = 81 = 9^2 $$

$$ z = \frac<7 \pm 9> <4>= \left[ \begin z_1 = — \frac<1> <2>\lt 3 \\ z_2 = 4 \gt 3 \end \right. $$

Выбираем корень больше 3 и возвращаемся к исходной переменной:

$$ x^2+3 = 4 \Rightarrow x^2 = 1 \Rightarrow x_ <1,2>= \pm 1$$

Пример 4*. Решите уравнения:

Приведём это уравнение к биквадратному.

В линейных множителях (x+a) выберем все a =

Найдем их среднее арифметическое (см. §52 справочника для 7 класса)

Замена переменных $z = x+a_$:

Упрощаем уравнение, используя формулу разности квадратов:

$$ (z^2-9)(z^2-1) = 945 \Rightarrow z^4-10z^2+9 = 945 \Rightarrow z^4-10z^2-936 = 0 $$

Получили биквадратное уравнение.

Делаем замену: $z^4-10z^2-936 = 0 \iff <\left\< \begin t = z^2 \ge 0 \\ t^2-10t-936 = 0 \end \right.> $

Решаем квадратное уравнение:

$$ D = 100+4 \cdot 936 = 3844 = 62^2, t = \frac<10 \pm 62> <2>= \left[ \begin t_1 = -26 \lt 0 \\ t_2 = 36 \gt 0 \end \right. $$

Выбираем положительный корень и возвращаемся к переменной z:

$$ z = \pm \sqrt= \pm \sqrt <36>= \pm 6 $$

Возвращаемся к исходной переменной x:

$$ x = z-4 = \pm 6-4 = \left[ \begin x_1 = -10 \\ x_2 = 2 \end \right. $$

$$ z- \frac<1> =2,1 |\times z (z \neq 0) $$

$$ z^2-2,1z-1 = 0 \Rightarrow D = 2,1^2+4 = 8,41 = 2,9^2; z = \frac<2,1 \pm 2,9> <2>= \left[ \begin z_1 = -0,4 \\ z_2 = 2,5 \end \right. $$

Берём оба корня и возвращаемся к исходной переменной.

$$ \left[ \begin \frac = -0,4 \\ \frac = 2,5 \end \right. \Rightarrow \left[ \begin x^2+1 = -0,4x \\x^2+1 = 2,5x \end \right. \Rightarrow \left[ \begin x^2+0,4x+1 = 0 \\ x^2-2,5x+1 = 0 \end \right. $$

В первом уравнении $D = 0,4^2-4 \lt 0$, решений нет.

Во втором уравнении (x-2)(x-1/2) = 0 $\Rightarrow \left[ \begin x_1 = \frac<1> <2>\\ x_2 = 2 \end \right.$


источники:

http://infourok.ru/konspekt-uroka-po-matematike-na-temu-uravnenie-reshenie-uravneniy-metodom-razlozheniya-na-mnozhiteli-276387.html

http://reshator.com/sprav/algebra/8-klass/reshenie-uravnenij-svodyashchihsya-k-kvadratnym/