Решение уравнений с арифметическим корнем примеры

Основные тождества для квадратных корней

Таблица основных тождеств для квадратных корней

$$ (\sqrt a)^2=a, \quad a \ge 0 $$

$$ \sqrt = |a|, \quad a \in \Bbb R $$

$$ \sqrt = |a^k |, \quad a \in \Bbb R, k \in \Bbb N $$

$$\sqrt = \sqrt a \cdot \sqrt b \cdot \sqrt c …, \quad a \ge 0, b \ge 0, c \ge 0, …$$

$$ \sqrt a \cdot \sqrt b \cdot \sqrt c … = \sqrt, \quad a \ge 0, b \ge 0, c \ge 0, …$$

Алгоритм решения уравнений с квадратным корнем

Решаем уравнение вида $ \sqrt = c, a \neq 0$

Шаг 1. Если $c \ge 0$, возвести в квадрат левую и правую части.

Если $c \lt 0$, решений нет, $x \in \varnothing$, перейти на шаг 3.

Шаг 2. $ax+b = c^2 \Rightarrow x = \frac $

Шаг 3. Конец работы.

Примеры

Пример 1. Вычислите:

д)$$ \sqrt <250>\cdot \sqrt <90>= \sqrt <25 \cdot 10 \cdot 9 \cdot 10>= \sqrt <25>\cdot \sqrt <9>9 \cdot \sqrt <10^2>= 5 \cdot 3 \cdot 10 = 150 $$

е)$$ \sqrt <33>\cdot \sqrt <21>\cdot \sqrt <77>= \sqrt <3 \cdot 11 \cdot 3 \cdot 7 \cdot 7 \cdot 11>= \sqrt <3^2>\cdot \sqrt <7^2>\cdot \sqrt <11^2>= 3 \cdot 7 \cdot 11 = 231 $$

Пример 2. Найдите значение выражения, если x = 1,14:

Пример 3. Решите уравнение:

$ (\sqrt)^2 = 5^2 \Rightarrow x-3 = 25 \Rightarrow x = 28 $

$\sqrt <5+x>= -1 \lt 0$ – значение квадратного корня не может быть отрицательным $x \in \varnothing$, решений нет

$ ( \sqrt)^2 = 4^2 \Rightarrow x^2+7 = 16 \Rightarrow x^2 = 9 \Rightarrow x_1,2 = \pm 3 $

$ (\sqrt<\sqrt+1>)^2 = 3^2 \Rightarrow \sqrt+1 = 9 \Rightarrow \sqrt = 8 \Rightarrow x+7 = 64 \Rightarrow x = 57 $

Пример 4*. Сократите дробь:

Пример 5. В Древнем Вавилоне уже умели находить не только квадратные корни в натуральных числах, но и вывели формулу для приблизительных вычислений.

Если число можно представить в виде $k = a^2 \pm b$, где $a^2$ – ближайший к a по значению квадрат натурального числа, b — «остаток», то

$ \sqrt <65>= \sqrt <8^2+1>\approx 8+ \frac<1> <2 \cdot 8>\approx 8,06 $

$ \sqrt <65>= \sqrt <8^2-1>\approx 8 — \frac<1> <2 \cdot 8>\approx 7,94 $

Найдите с точностью до сотых квадратные корни из следующих чисел:

$ \sqrt <125>= \sqrt <121+4>= \sqrt <11^2+4>\approx 11+ \frac<4> <2 \cdot 11>\approx 11,18 $

$ \sqrt <138>= \sqrt <144-6>= \sqrt <12^2-6>\approx 12 — \frac<6> <2 \cdot 12>\approx 11,75 $

$ \sqrt <83>= \sqrt <81+2>= \sqrt <9^2+2>\approx 9 + \frac<2> <2 \cdot 9>\approx 9,11 $

$ \sqrt <175>= \sqrt <169+6>= \sqrt <13^2+6>\approx 13 + \frac<6> <2 \cdot 13>\approx 13,23 $

Что такое квадратный корень

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Что такое квадратный корень

Определение арифметического квадратного корня ясности не добавляет, но заучить его стоит:

Арифметическим квадратным корнем из неотрицательного числа a называется такое неотрицательное число, квадрат которого равен a.

Определение квадратного корня также можно представить в виде формул:
√a = x
x 2 = a
x ≥ 0
a ≥ 0

Из определения следует, что a не может быть отрицательным числом. То есть то, что стоит под корнем — обязательно положительное число.

Чтобы разобраться, почему именно так и никак иначе, давайте рассмотрим пример.

Попробуем найти корень из √-16

Здесь логично предположить, что 4, но давайте проверим: 4*4 = 16 — не сходится.

Если — 4, то -4 * -4 = 16, (минус на минус всегда дает плюс).

Получается, что ни одно число не может дать отрицательный результат при возведении его в квадрат.

Числа, стоящие под знаком корня, должны быть положительными.

Исходя из определения, значение корня также не должно быть отрицательным.

Здесь могут возникнуть резонные вопросы, почему, например, в примере x 2 = 16, x = 4 и x = -4.

Разница между квадратным корнем и арифметическим квадратным уравнением

Прежде всего, чтобы разграничить эти два понятия, запомните:

  • x 2 = 16 не равно x = √16.

Это два нетождественных друг другу выражения.

  • x 2 = 16 — это квадратное уравнение.
  • x = √ 16 — арифметический квадратный корень.

Из выражения x 2 = 16 следует, что:

  • |x| = √16, это значит, что x = ±√16 = ±4, x1 = 4, x2 = -4.

Если две вертикальные палочки возле x вводят вас в замешательство, почитайте нашу статью о модуле числа.

В то же самое время, из выражения x = √16 следует, что x = 4.

Если ситуация все еще кажется запутанной и нелогичной, просто запомните, что отрицательное число может быть решением только в квадратном уравнении. Если в решении «минус» — есть два варианта:

  1. Пример решен неверно
  2. Это квадратное уравнение.

Если вы извлекаете квадратный корень из числа, то можете быть уверены, вас ждет «положительный» результат.

Давайте рассмотрим пример, чтобы окончательно выяснить разницу между квадратным корнем и квадратным уравнением.

Даны два выражения:

Первое выражение — квадратное уравнение.

Второе выражение — арифметический квадратный корень.

Мы видим, что результатом решения первого выражения стали два числа — отрицательное и положительное. А во втором случае — только положительное.

Запись иррациональных чисел с помощью квадратного корня

Иррациональное число — это число, которое нельзя представить в виде обыкновенной дроби.

Чаще всего, иррациональные числа можно встретить в виде корней, логарифмов, степеней и т.д.

Примеры иррациональных чисел:

Чтобы упростить запись иррациональных чисел, математики ввели понятие квадратного корня. Давайте разберем пару примеров, чтобы увидеть квадратный корень в деле.

Дано уравнение: x 2 = 2.

Сразу сталкиваемся с проблемой, поскольку очевидно, что ни одно целое число не подходит.

Переберем числа, чтобы удостовериться в этом:

1 * 1 = 1,
2 * 2 = 4,
3 * 3 = 9.

Отрицательные числа дают такой же результат. Значит результатом решения не могут быть целые числа.

Решение следующее:
Строим график функции y = x 2 .
Отмечаем решения на графике: -√2; √2.

Если попробовать извлечь квадратный корень из 2 с помощью калькулятора, то результат будет следующий: √2 = 1,414213… .

В таком виде ответ не записывают — нужно оставить квадратный корень.
x 2 = 2.
x = √2
x = -√2.

Извлечение корней

Решать примеры с квадратными корнями намного легче, если запомнить как можно больше квадратов чисел. Для этого воспользуйтесь таблицей — сохраните ее себе и используйте для решения задачек.

Таблица квадратов

Вот несколько примеров извлечения корней, чтобы научиться пользоваться таблицей:

  • 1. Извлеките квадратный корень: √289

Ищем в таблице число 289, двигаемся от него влево и вверх, чтобы определить цифры, образующие нужное нам число.

Влево — 1, вверх — 7.

  • 2. Извлеките квадратный корень: √3025

Ищем в таблице число 3025.
Влево — 5, вверх — 5.

  • 3. Извлеките квадратный корень: √7396

Ищем в таблице число 7396.

Влево — 8, вверх — 6.

  • 4. Извлеките корень: √9025

Ищем в таблице число 9025.

Влево — 9, вверх — 5.

  • 5. Извлеките корень √1600

Ищем в таблице число 1600.

Влево — 4, вверх — 0.

Извлечением корня называется нахождение его значение.

Свойства арифметического квадратного корня

У арифметического квадратного корня есть 3 свойства — их нужно запомнить, чтобы проще решать примеры.

  • Корень произведения равен произведению корней
  • Извлечь корень из дроби — это извлечь корень из числителя и из знаменателя
  • Чтобы возвести корень в степень, нужно возвести в степень значение под корнем

Давайте потренируемся и порешаем примеры на все три операции с корнями. Не забывайте обращаться к таблице квадратов. Попробуйте решить примеры самостоятельно, а для проверки обращайтесь к ответам.

Умножение арифметических корней

Для умножения арифметических корней используйте формулу:

Примеры:

Внимательно посмотрите на второе выражение и запомните, как записываются такие примеры.

Если нет возможности извлечь корни из чисел, то поступаем так:

  1. Если множителей больше двух, то решается примерно точно так, как и с двумя множителями:

Деление арифметических корней

Для деления арифметических корней используйте формулу:

Примеры:

Ответ: смешанную дробь превращаем в неправильную (16 * 3) + 1 = 49

  • Выполняя деление, не забывайте сокращать множители. При делении арифметических корней, используйте правила преобразования обыкновенных дробей.

    Возведение арифметических корней в степень

    Для возведения арифметического корня в степень используйте формулу:

    Примеры:

    Эти две формулы нужно запомнить:

    • (√a) 2 = a
    • √a 2 = |a|

    Повторите свойства степеней или запишитесь на курсы по математике, чтобы без труда решать такие примеры.

    Внесение множителя под знак корня

    Вы уже умеете по-всякому крутить и вертеть квадратными корнями: умножать, делить, возводить в степень. Богатый арсенал, не правда ли? Осталось овладеть еще парой приемов и можно без страха браться за любую задачку.

    А теперь давайте разберемся, как вносить множитель под знак корня.

    Дано выражение: 7√9

    Число семь умножено на квадратный корень из числа девять.

    Извлечем квадратный корень и умножим его на 7.

    В данном выражение число 7 — множитель. Давайте внесем его под знак корня.

    Запомните, что вносить множитель под знак корня обязательно нужно так, чтобы значение исходного выражения осталось неизменным. Иными словами, после наших манипуляций с корнем, значение выражения должно по-прежнему оставаться 21.

    Вы помните, что (√a) 2 = a

    Тогда число 7 должно быть возведено во вторую степень. В этом случае значение выражения останется тем же.

    7√9 = √7 2 * 9 = √49 * 9 = √49 * √9 = 7 * 3 = 21.

    Формула внесения множителя под знак корня:

    Потренируемся вносить множители. Попробуйте решить примеры самостоятельно, сверяясь с ответами.

    Вынесение множителя из-под знака корня

    С тем, как вносить множитель под корень мы, кажется, разобрались. Но алгебра — такая алгебра, поэтому теперь неплохо бы и вынести множитель из-под знака корня.

    Дано выражение в виде квадратного корня из произведения.

    Вы уже наверняка без труда извлекаете квадратный корень из чего угодно, поэтому знаете, что делать.

    Извлекаем корень из всех имеющихся множителей.

    В данном выражении квадратный корень мы можем извлечь только из 4, поэтому:

    Таким образом множитель выносится из-под знака корня.

    Давайте разберем примеры. Попробуйте вынести множители из-под знака корня самостоятельно, сверяясь с ответами.

    Раскладываем подкоренное выражение на множители 28 = 7*4.

    Извлекаем корень из 4. Множитель 7 оставляем под знаком корня.


  • Ответ: по правилу извлечения квадратного корня из произведения,

    Так как вынесенный множитель должен стоять перед подкоренным знаком, то меняем их местами.
  • Вынесите множитель из-под знака корня в выражении: √24

    Ответ: Раскладываем выражение под корнем на множители 24 = 6 * 4.

  • Упростите выражение:

    Вынесем в двух последних выражения множитель из-под знака корня.

    Умножаем (-4 * 4) = -16. Все остальное выражение записываем в неизменном виде.

    Мы видим, что во всем выражении есть один общий множитель — √5.
    Выносим общий множитель за скобки:

    Далее вычисляем все, что в скобках:
  • Сравнение квадратных корней

    Мы почти досконально разобрали арифметический квадратный корень, научились умножать, делить и возводить его в степень. Теперь вы без труда можете вносить множители под знак корня и выносить их оттуда. Осталось научиться сравнивать корни и стать непобедимым теоретиком.

    Итак, чтобы понять, как сравнить два квадратных корня, нужно запомнить пару правил.

    Если:

    Потренируйтесь в сравнении корней. Сверяете свои результаты с ответами.

      Сравните два выражения: √50 и 9√5

    Ответ: преобразовываем выражение 9√5.

    9√5 = √81 * √5 = √81*5 = √405

    Это значит, что 6√5 > √18.

    Сравните два выражения: 7√12 и √20

    Ответ: преобразовываем выражение 7√12.

    7√12 = √49 * √12 = √49*12 = √588

    Это значит, что 7√12 > √20.

    Как видите, ничего сложного в сравнении арифметических квадратных корней нет.

    Самое главное — выучить формулы и сверяться с таблицей квадратов, если значения корня слишком большие для легкого вычисления в уме.

    Не бойтесь пользоваться вспомогательными материалами. Математика просто создана для того, чтобы окружить себя подсказками и намеками.

    Когда вы почувствуете, что уже достаточно натренировались в решении примеров с квадратными корнями, можете позволить себе время от времени прибегать к помощи онлайн-калькуляторов. Они помогут решать примеры быстрее и быть эффективнее.

    Таких калькуляторов в интернете много, вот один из них.

    Извлечение квадратного корня из большого числа

    Вы уже наверняка познакомились и подружились с таблицей квадратов. Она — ваша правая рука. С ее помощью вы реактивно решаете примеры и, возможно, даже подумываете запомнить ее наизусть.

    Но, как вы можете заметить, таблица заканчивается на числе 9801. А это, согласитесь, не самое крупное число из тех, что могут вам попасться в примере.

    Чтобы извлечь корень из большого числа, которое отсутствует в таблице квадратов, нужно:

    1. Определить «сотни», между которыми оно стоит.
    2. Определить «десятки», между которыми оно стоит.
    3. Определить последнюю цифру в этом числе.

    Извлечь корень из большого числа можно разными способами — вот один из них.

    Извлечем корень из √2116.

    Наша задача в том, чтобы определить между какими десятками стоит число 2116.

    Мы видим что, 2116 больше 1600, но меньше 2500.

    Это значит, что число 2116 находится между 40 2 и 50 2 .

    41, 42, 43, 44, 45, 46, 47, 48, 49.

    Запомните лайфхак по вычислению всего на свете, что нужно возвести в квадрат.

    Не секрет, что на последнем месте в любом числе может стоять только одна цифра от 1 до 0.

    Как пользоваться таблицей

    4 2 = 16 ⇒ 6

    5 2 = 25 ⇒ 5

    6 2 = 36 ⇒ 6

    7 2 = 49 ⇒ 9

    8 2 = 64 ⇒ 4

    9 2 = 81 ⇒ 1

    Мы знаем, что число 41, возведенное в квадрат, даст число, на конце которого — цифра 1.

    Число, 42, возведенное в квадрат, даст число, на конце которого — цифра 4.

    Число 43, возведенное в квадрат, даст число, на конце которого — 9.

    Такая закономерность позволяет нам без записи «перебрать» все возможные варианты, исключая те, которые не дают нужную нам цифру 6 на конце.

    Таким образом, у нас остаются два варианта: 44 2 и 46 2 .

    Далее вычисляем: 44 * 44 = 1936.

    Если такой способ показался не до конца понятным — можно потратить чуть больше времени и разложить число на множители. Если решить все правильно, получим такой же результат.

    Еще пример. Извлечем корень из числа √11664

    Разложим число 11664 на множители:

    Запишем выражение в следующем виде:

    Извлечь квадратный корень из большого числа гораздо проще с помощью калькулятора. Но знать парочку таких способов «на экстренный случай» точно не повредит. Например, для контрольной или ЕГЭ.

    Чтобы закрепить все теоретические знания, давайте ещё немного поупражняемся в решении примеров на арифметические квадратные корни.

    • 1. Вычислите значение квадратного корня: √36
    • 2. Вычислите значение квадратного корня: √64*36
    • 3. Вычислите значение квадратного корня:
    • 4. Вычислите значение квадратного корня:
    • 5. Вычислите значение квадратного корня:
    • 6. Вычислите значение выражения: 4√16 — 12
    • 7. Вычислите значение выражения: 5√9 — 8
    • 8. Вычислите значение выражения: 7√25 — 10
    • 9. Вычислите значение квадратного корня:
    • 10. Вычислите значение квадратного уравнения:
    • 11. Вычислите значение квадратного уравнения:
    • 12. Извлеките квадратный корень из числа √7056 удобным вам способом
      Как решаем:

    • 13. Вычислите значение квадратного корня √0,81
      Ответ: √0,81 = 0,9
    • 14. Вычислите значение квадратного корня:
      Как решаем: = 0,09
    • 15. Вычислите значение выражения: 8√81 — 20
      Как решаем: 8√81 — 20 = 8 * 9 — 20 = 72 — 20 = 52
      Ответ: 8√81 — 20 = 52.
    • 16. Вычислите значение выражения: 13√100 — 15
      Как решаем: 13√100 — 15 = 13 * 10 — 15 = 130 — 15 = 115
      Ответ: 13√100 — 15 = 115.
    • 17. Вычислите значение выражения: √16 + 5√4
      Как решаем: √16 + 5√4 = 4 + 5 * 4 = 4 + 20 = 24 Ответ: √16 + 5√4 = 24.
    • 18. Вычислите значение выражения: √36 + 2√9
      Как решаем: √36 + 2√9 = 6 + 2 * 3 = 6 + 6 = 12
      Ответ: √36 + 2√9 = 12.
    • 19. Вычислите значение выражения: 2√16 — 3√25
      Как решаем: 2√16 — 3√25 = 2 * 4 — 3 * 5 = 8 — 15 = -7
      Ответ: 2√16 — 3√25 = -7.
    • 20. Вычислите значение выражения: 3√81 — 5√9
      Как решаем: 3√81 — 5√9 = 3*9 — 5 * 3 = 27 — 15 = 12
      Ответ: 3√81 — 5√9 = 12.
    • 21. Вынесите множитель из-под знака корень: √60
      Как решаем: √60 = √15 * √4 = 2√15
      Ответ: √60 = 2√15.
    • 22. Вынесите множитель из-под знака корень: √160
      Как решаем: √160 = √16 * √10 = 4√10
      Ответ: √160 = 4√10.
    • 23. Внесите множитель под знак корня: 6√7
      Как решаем: √6 2 * 7 = √36 * √7 = √252
      Ответ: 6√7 = √252.
    • 24. Внесите множитель под знак корня: 8√2
      Как решаем: 8√2 = √8 2 * 2 = √64 * √2 = √128 Ответ: 8√2 = √128.
    • 25. Внесите множитель под знак корня: 9√5

      Как решаем: 9√5 = √9 2 * 5 = √81 * √5 = √405
      Ответ: 9√5 = √405.

    • 26. Упростите выражение: (5 — √2) 2
      Как решаем: (5 — √2) 2 = 5 2 — 2 * 5 * √2 + (√2) 2 = 25 — 10√2 + 2 = 27 — 10√2.
      Ответ: (5 — √2) 2 = 27 — 10√2.
    • 27. Вычислите значение выражения: 3√49 — 3√25
      Как решаем: 3√49 — 3√25 = 3 * 7 — 3 * 5 = 21 — 15 = 6
      Ответ: 3√49 — 3√25 = 6.
    • 28. Вычислите значение квадратного корня: √484 * √576
      Как решаем: √484 * √576 = 22 * 24 = 528
      Ответ: √484 * √576 = 528.
    • 29. Вычислите значение квадратного корня: √625 * √81
      Как решаем: √625 * √81 = 25 * 9 = 225
      Ответ: √625 * √81 = 225.
    • 30. Найдите значение выражения: 3√100 — √144
      Как решаем: 3100 — 144 = 3 * 10 — 12 = 18
      Ответ: 3√100 — √144 = 18.

      0 0 0 0 0 0

    109004, Москва, ул. Александра Солженицына, 23а, строение 1, подъезд 10

    Алгебра

    План урока:

    Иррациональные уравнения

    Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

    Приведем примеры иррациональных ур-ний:

    Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

    Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

    Простейшие иррациональные уравнения

    Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

    где а – некоторое число (константа), f(x) – рациональное выражение.

    Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

    Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

    n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

    Пример. Решите ур-ние

    Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

    Ответ: корней нет.

    Пример. Решите ур-ние

    Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

    Пример. Решите ур-ние

    Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

    Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

    Пример. Найдите решение ур-ния

    Решение. Возведем обе части в пятую степень:

    х 2 – 14х – 32 = 0

    Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

    D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

    Итак, нашли два корня: (– 2) и 16.

    Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

    Пример. Решите ур-ние

    Решение. Возводим обе части во вторую степень:

    х – 2 = х 2 – 8х + 16

    D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

    Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

    при х = 3 х – 4 = 3 – 4 = – 1

    при х = 6 6 – 4 = 6 – 4 = 2

    Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

    Пример. Решите ур-ние

    Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

    3х 2 + 6х – 25 = (1 – х) 3

    3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

    Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

    Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

    Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

    при х = 2 1 – х = 1 – 2 = – 1

    Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

    Уравнения с двумя квадратными корнями

    Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

    Пример. Решите ур-ние

    Решение. Перенесем вправо один из корней:

    Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

    Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

    Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

    (2х – 4) 2 = 13 – 3х

    4х 2 – 16х + 16 = 13 – 3х

    4х 2 – 13х + 3 = 0

    D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

    Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

    Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

    На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

    Введение новых переменных

    Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

    Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

    Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

    х 1/2 – 10х 1/4 + 9 = 0

    Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

    Это квадратное ур-ние. Найдем его корни:

    D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

    Получили два значения t. Произведем обратную замену:

    х 1/4 = 1 или х 1/4 = 9

    Возведем оба ур-ния в четвертую степень:

    (х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

    х = 1 или х = 6561

    Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

    В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

    Пример. Решите ур-ние

    х 1/3 + 5х 1/6 – 24 = 0

    Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

    Его корни вычислим через дискриминант:

    D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

    Далее проводим обратную заменуx 1/6 = t:

    х 1/6 = – 8 или х 1/6 = 3

    Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

    Замена иррационального уравнения системой

    Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

    Пример. Решите ур-ние

    Решение. Заменим первый корень буквой u, а второй – буквой v:

    Исходное ур-ние примет вид

    Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

    Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

    Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

    (х + 6) + (11 – х) = u 3 + v 2

    из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

    17 = u 3 + (5 – u) 2

    17 = u 3 + u 2 – 10u + 25

    u 3 + u 2 – 10u + 8 = 0

    Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

    подставим полученные значения в (4):

    x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

    x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

    х = – 5 или х = 2 или х = – 70

    Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

    Корень подошел. Проверяем следующее число, х = 2:

    Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

    Итак, все три числа прошли проверку.

    Уравнения с «вложенными» радикалами

    Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

    При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

    Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

    Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

    Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

    Возводим в квадрат и получаем:

    х 2 + 40 = (х + 4) 2

    х 2 + 40 = х 2 + 8х + 16

    И снова нелишней будет проверка полученного корня:

    Иррациональные неравенства

    По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

    Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

    Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

    Может быть справедливым только тогда, когда

    То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

    при четном n можно заменить системой нер-в

    Пример. При каких значениях x справедливо нер-во

    Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

    х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

    Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

    чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

    Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

    Пример. Найдите решение нер-ва

    Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

    x 2 – 7x– 8 2 – 7x– 8 = 0

    D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

    Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

    Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

    Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

    Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

    Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

    Пример. Решите нер-во

    Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

    И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

    D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

    Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

    стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

    f(x) > 0 (подкоренное выражение не может быть отрицательным);

    g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

    Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

    Пример. Решите нер-во

    Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

    х 2 – 10х + 21 > 0(1)

    Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

    Во-вторых, выражение 4 – х не может быть отрицательным:

    Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

    Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

    Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

    Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

    Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

    Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

    Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3


    источники:

    http://skysmart.ru/articles/mathematic/chto-takoe-kvadratnyj-koren

    http://100urokov.ru/predmety/urok-11-uravneniya-irracionalnye