Решение уравнений с двумя переменными 11 класс

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №42. Линейные уравнения и неравенства с двумя переменными

Перечень вопросов, рассматриваемых в теме:

  • Решение уравнений, неравенств, систем уравнений и систем неравенств с двумя переменными;
  • Изображение в координатной плоскости множества решений уравнений, неравенств, систем уравнений, систем неравенств;
  • Нахождение площади получившейся фигуры.

Глоссарий по теме

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными, где a, b и c — некоторые числа (a ≠ 0 , b ≠0), а, х и у — переменные.

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. Учебник: Алгебра 9 кл с углубленным изучением математики Мнемозина, 2014.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.

Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.

Теоретический материал для самостоятельного изучения

Уравнения, а также системы уравнений имеют давнюю историю. Нам известно, что уже в Древнем Вавилоне и Индии повседневные задачи, связанные с земляными работами или планированием военных расходов, а также астрономическими наблюдениями решались с помощью уравнений и их систем.

В то время еще не существовало привычного нам формального языка математики. Вавилоняне, также, как и индусы не использовали в своих трактатах привычные нам «икс» и «игрек». Не обозначали степень надстрочными индексами. И т.д. Их уравнения записаны в виде текстовых задач. Также, как и решения, не похожи на современные, а скорее напоминают цепочку логических рассуждений.

Вместе с тем, если перевести в привычный нам вид те уравнения, которые умели решать в Древнем Вавилоне, то мы увидим: . И в древнем индийском манускрипте «Ариабхаттиам», датируемом 499 годом нашей эры, также встречаются задачи, решаемые с помощью квадратных уравнений. Индийские мудрецы (слово ученый тоже еще не существовало) уже не ограничивались решением конкретных житейских задач, но и работали над решением квадратного уравнения в общем виде.

Привычный нам вид уравнения обретают только в конце шестнадцатого века, благодаря трудам Франсу Виета (1540 – 1603 гг.). Именно он, помимо прочих своих научных достижений обладает и неофициальным титулом «создатель алгебры». Поскольку разработал и активно внедрял символический язык алгебры – те самые, привычные нам «иксы и игреки».

1.Найдите уравнения, которые являются линейными.

4х + 5у = 10; ; у = 7х +4

Ответ: 4х + 5у = 10; у = 7х +4

Сегодня на уроке мы вспомним что такое линейные уравнения и неравенства с двумя переменными; системы линейный уравнений и неравенств, а также научимся изображать множество на плоскости, задаваемое линейным уравнением и неравенством.

  1. Линейные уравнения с двумя переменными.

Уравнение вида ах + by +с =0, где а,b,с – некоторые числа, называется линейным уравнением с двумя переменными х и у.

Решением уравнения ах + by +с =0, где а,b,с – некоторые числа, называется пара значений обращающая уравнение в верное числовое равенство.

Если одновременно а и b, то уравнение ах + by +с =0 является уравнением некоторой прямой. Для построения прямой достаточно найти две точки этой прямой.

Построить график уравнения 2х+у =1

На координатной плоскости отметим точки с координатами (0;1) и (2;-3). Через две точки на плоскости проведем прямую. Полученная прямая является геометрической моделью уравнения 2х+у =1.

  1. Линейные неравенства с двумя переменными.

Линейным неравенством с двумя переменными называется неравенство вида ах + bу + с 0, где х и у – переменные, а, b, c – некоторые числа.

Решением неравенства с двумя переменными называется пара значений переменных, обращающая его в верное равенство.

Является ли пара (2;1) решением неравенства 5х + 2у > 4 . Является, тк при подстановке в него вместо х числа 2, а вместо у числа 1 получается верное равенство 10 + 2 > 4.

Если каждое решение неравенства с двумя переменными изобразить точкой в координатной плоскости, то получится график этого неравенства. Он является некоторой фигурой.

Найти множество точек координатной плоскости, удовлетворяющих неравенству 3х – 2у +6 > 0.

  1. Уравнение 3х – 2у +6 = 0 является уравнением прямой, проходящей через точки(- 2; 0) и (0; 3).
  2. Пусть точка М11,у1) лежит в заштрихованной полуплоскости (ниже прямой 3х – 2у +6 = 0, а М21,у2)лежит на прямой 3х – 2у +6 = 0. Тогда 2у2 – 3х1 – 6 = 0, а 2у1 – 3х1 – 6 0 штриховкой (рис. 1)

Рисунок 1 – решение неравенства 3х – 2у +6 > 0

Если в линейном неравенстве с двумя переменными знак неравенства заменить знаком равенства, то получится линейное уравнение ах + by +с =0, графиком которого является прямая при условии, что и . Прямая разбивает плоскость на две полуплоскости. Одна из них является графиком неравенства ах + bу + с 0

Чтобы решить неравенство ах + bу + c 0, достаточно взять какую-нибудь точку М11; у1), не лежащую на прямой aх + bу + c = 0, и определить знак числа aх1 + bу1 + c.

Уравнения и неравенства с двумя переменными и их геометрическое решение
методическая разработка по математике (11 класс)

Разработка комплекса уроков содержит задания, аналитическое и графическое решения.Предназначена для подготовки к ЕГЭ.

Скачать:

ВложениеРазмер
uravneniya_i_neravenstva_s_dvumya_peremennymi_i_graficheskoe_predstavlenie.doc329 КБ

Предварительный просмотр:

Уравнения и неравенства с двумя переменными

и их геометрическое решение

2. Уравнения с двумя переменными, их геометрическое решение и применение.

2.1 Системы уравнений.

2.2 Примеры решения уравнений с двумя переменными.

2.3. Примеры решения систем уравнений с двумя переменными.

3. Неравенства и их геометрическое решение.

3.1. Примеры решения неравенств с двумя переменными

3.2. Примеры решения систем неравенств.

4. Графический метод решения задач с параметрами.

5.Список использованной литературы.

Изучение поведения функций и построение их графиков является важным разделом математики, и свободное владение техникой построения графиков часто помогает решать многие задачи, и порой является единственным средством их решения. Также графический метод решения уравнений позволяет определить число корней уравнения, значения корня, найти приближенные, а иногда точные значения корней.

В технике и физике часто используются именно графическим способом задания функций. Ученый- сейсмолог, анализируя сейсмограмму, узнает, когда было землетрясение, где оно произошло, определяет силу и характер толчков. Врач, исследовавший больного, может по кардиограмме судить о нарушениях сердечной деятельности: изучение кардиограммы помогает правильно поставить диагноз заболевания. Инженер – радиоэлектроник по характеристике полупроводникового элемента выбирает наиболее подходящий режим его работы. Количество таких примеров легко увеличить. Более того, по мере развития математики растет проникновение графического метода в самые различные области жизни человека. В частности, использование функциональных зависимостей и построение графиков широко применяется в экономике. Значит, растет и важность изучения рассматриваемого раздела математики в школе, в вузе, и особенно- важность самостоятельной работы над ним.

С развитием вычислительной техники, с ее прекрасными графическими средствами и высокими скоростями выполнения операций, работа с графиками функций стала значительно интересней, наглядней, увлекательней. Имея аналитическое представление некоторой зависимости, можно построить график быстро, в нужном масштабе и цвете, используя для этого различные программные средства.

  1. Уравнения с двумя переменными и их геометрическое решение.

Уравнение вида f(x;y)=0 называется уравнением с двумя переменными.

Решением уравнения с двумя переменными называется упорядоченная пара чисел (α, β), при подстановке которой (α – вместо х, β – вместо у) в уравнении имеет смысл выражение f( α; β)=0

Например, для уравнения (( х +1) ) 2 + у 2 =0 упорядоченная пара чисел (0;0) есть его решение, так как выражение ((0+1) ) 2 +0 2 имеет смысл и равно нулю, но упорядоченная пара чисел (-1;0) не является решением, так как не определен и поэтому выражение ((-1+1) ) 2 +0 2 не имеет смысла.

Решить уравнение – значит найти множество всех его решений.

Уравнения с двумя переменными может:

а) иметь одно решение. Например, уравнение х 2 +у 2 =0 имеет одно решение (0;0);

б) иметь несколько решений. Например, данное уравнение (‌‌│ х │- 1) 2 +(│ у │- 2) 2 имеет четыре решения: (1;2),(-1;2),(1;-2),(-1;-2);

в) не иметь решений. Например уравнение х 2 +у 2 + 1=0 не имеет решений;

г) иметь бесконечно много решений. Например, такое уравнение, как х-у+1=0 имеет бесконечно много решений

Иногда бывает полезной геометрическая интерпретация уравнения f(x;y)=g(x;y) . На координатной плоскости хОу множество всех решений – некоторое множество точек. В ряде случаев это множество точек есть некоторая линия, и в этом случае говорят, что уравнение f(x;y)=g(x;y) есть уравнение этой линии, например:

  1. уравнение Ах+Ву+С=0 (А 2 +В 2 0) есть уравнение прямой (рис.1);
  2. уравнение х 2 +у 2 =R 2 (R 0) есть уравнение окружности ( рис.2);
  3. уравнение ху=а (а 0) есть уравнение гиперболы (рис.3,4);
  4. уравнение у=ах 2 +bх+с (а 0) есть уравнение параболы (рис.5);
  5. уравнение х 2 +у 2 =0 задает одну точку (0;0) (рис.6)

2.1 Системы уравнений

Пусть заданы два уравнения с неизвестными х и у

F 1 ( x; y)=0 и F 2 (x; y)=0

Будем считать, что первое из этих уравнений задаёт на плоскости переменных х и у линию Г 1 , а второе — линию Г 2 . Чтобы найти точки пересечения этих линий, надо найти все пары чисел (α, β), такие, что при замене в данных уравнениях неизвестной х на число α и неизвестной у на число β, получаются верные числовые равенства. Если поставлена задача об отыскании всех таких пар чисел, то говорят, что требуется решить систему уравнений и записывают эту систему с помощью фигурной скобки в следующем виде

Решением системы называется такая пара чисел (α, β), которая является решением как первого, так и второго уравнений данной системы.

Решить систему – значить найти множество всех ее решений, или доказать, что решений нет.

В ряде случаев геометрическая интерпретация каждого уравнения системы, ибо решения системы соответствуют точкам пересечения линий, задаваемых каждым уравнением системы. Часто геометрическая интерпретация позволяет лишь догадаться о числе решений.

Например, выясним, сколько решений имеет система уравнений

Первое из уравнений системы задает окружность радиусом R= c центром (0;0), а второе – параболу, вершина которой находится в той же точке. Теперь ясно, что имеются две точки пересечения этих линий. Следовательно, система имеет два решения – это (1;1) и (-1;1)

  1. Примеры решения уравнений с двумя переменными

Изобразите все точки с координатами (х;у), для которых выполняется равенство.

Данное уравнение равносильно совокупности двух уравнений

Каждое из полученных уравнений определяет на координатной плоскости прямую.

Решением данного уравнения является множество точек плоскости, координаты, которых удовлетворяют совокупности уравнений

На координатной плоскости решение будет выглядеть так

Решение: Воспользуемся определением абсолютной величины и заменим данное уравнение равносильной совокупностью двух систем

у=х 2 +2х у = -х 2 +2х

х 2 +2х=0 х в =1 у в =1

Решить систему графическим способом:

В каждом уравнении выразим переменную у через х и построим графики соответствующих функций:

у = +1

а) построим график функции у=

График функции у = +1 получается из графика у = путем сдвига на две единицы вправо и на одну единицу вверх :

у = — 0,5х+2 — это линейная функция, графиком которой является прямая

Решением данной системы являются координаты точки пересечения графиков функций.

3.Неравенства и их геометрическое решение.

Неравенство с двумя неизвестными можно представить так: f(x;y) >0, где Z = f(x;y) – функция двух аргументов х и у . Если мы рассмотрим уравнение f(x;y) = 0, то можно построить его геометрическое изображение, т.е. множество точек М(х;у), координаты которых удовлетворяют этому уравнению. В каждой из областей функция f сохраняет знак, остается выбрать те из них, в которых f(x;у ) >0 .

Рассмотрим линейное неравенство ax+by+c >0 . Если один из коэффициентов a или b отличен от нуля, то уравнение ax+by+c=0 задает прямую, разбивающую плоскость на две полуплоскости. В каждой из них будет сохраняться знак функции z = ax+by+c. Для определения знака можно взять любую точку полуплоскости и вычислить значение функции z в этой точке.

Решением неравенства является множество точек правой полуплоскости (закрашенной на рисунке 1)

Неравенству │y│+0,5 ≤ удовлетворяет множество точек плоскости (х;у), заштрихованной на рисунке 2. Для построения данной области воспользуемся определением абсолютной величины и способами построения графика функции с помощью параллельного переноса графика функции по оси ОХ или ОУ

3.1. Примеры решения неравенств с двумя переменными.

Изобразите множество решений неравенства

3.2. Примеры решения систем неравенств.

Изобразите множество решений системы неравенств на координатной плоскости

4. Графический метод решения задач с параметрами

Задачами с параметрами называют задачи, в которых участвуют фактически функции нескольких переменных, из которых одна переменная х выбрана в качестве независимой переменной, а оставшиеся играют роль параметров. При решении таких задач особенно эффективны графические методы. Приведем примеры

  1. Определите, при каком значении а уравнение имеет ровно три различных действительных корня. Решение: построим график функции у= . Уравнение у=а определяет семейство прямых, параллельных оси абсцисс.

По рисунку видно, что прямая у=4 пересекает график функции у= в трех точках. Значит, исходное уравнение имеет три решения при а= 4.

  1. Найти все значения параметра а , при которых уравнение х 2 -6|х|+5=а имеет ровно три различных корня.

Решение: Построим график функции у=х 2 -6х+5 для х ≥0 и отражаем его зеркально относительно оси ординат. Семейство прямых, параллельных оси абсцисс у=а , пересекает график в трех точках при а =5

3. Найти все значения а, при которых неравенство имеет хотя бы одно положительное решение.

Уравнения с двумя переменными (неопределенные уравнения)

Разделы: Математика

Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

Цель урока:

    повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
  • воспитание познавательного интереса к учебному предмету
  • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

Урок 1.

Ход урока.

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5•2+6 = 1

x = 4, y = -2.5•4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

m, n, x, y Z

Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид

5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: где m Z.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: , где n Z.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) =>

    б) =>

    в) =>

    г) =>

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а)

    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б)

    в)

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Z
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Z
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Z
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Z
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Z
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Z
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Z
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Z

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) (1;2), (5;2), (-1;-1), (-5;-2)

    Число 3 можно разложить на множители:

    a) б) в) г)
    в) (11;12), (-11;-12), (-11;12), (11;-12)
    г) (24;23), (24;-23), (-24;-23), (-24;23)
    д) (48;0), (24;1), (24;-1)
    е) x = 3m; y = 2m, mZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Z
    з) x = 2m; y = m; x = 2m; y = -m, m Z
    и)решений нет

    4) Решить уравнения в целых числах

    (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    (-4;-1), (-2;1), (2;-1), (4;1)
    (-11;-12), (-11;12), (11;-12), (11;12)
    (-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) (-1;0)
    б)(5;0)
    в) (2;-1)
    г) (2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.

  • источники:

    http://nsportal.ru/shkola/matematika/library/2019/12/08/uravneniya-i-neravenstva-s-dvumya-peremennymi-i-ih

    http://urok.1sept.ru/articles/417558