Решение уравнений с неизвестными коэффициентами

Метод неопределенных коэффициентов и его универсальность

Разделы: Математика

Применение метода неопределённых коэффициентов основано на следующих двух теоремах.

Теорема №1 (о многочлене, тождественно равном нулю).

Если при произвольных значениях аргумента x значение многочлена f(x) = а0+ а1х + а2х 2 +. + а nx n , заданного в стандартном виде, равно нулю, то все его коэффициенты а0, а1, а2, . аn равны нулю.

Теорема №2 (следствие теоремы № 1).

Деление многочлена на многочлен.

Пример 1. Выполнить деление многочлена х 5 – 6х 3 + 2х 2 -4 на многочлен х 2 – х + 1.

Решение: Надо найти такие многочлены Q(x) и R(x), что х 5 – 6х 3 + 2х 2 -4 = (х 2 – х + 1) Q(x) + R(x), причём степень многочлена R(x) меньше степени многочлена (х 2 – х + 1). Из того, что степень произведения многочленов равна сумме их степеней, следует, что степень многочлена Q(x) равна 5 – 2 = 3.

Многочлены Q(x) и R(x) имеют вид:

Раскроем скобки в правой части равенства:

Для отыскания неизвестных коэффициентов получаем систему уравнений:

Ответ: Q(x) = x 3 + x 2 — 6x — 5, R(x) = x + 1.

Пример 2. Выполнить деление многочлена х 7 –1 на многочлен х 3 + х + 1.

Решение: Надо найти такие многочлены Q(x) и R(x), что х 7 –1 = (х 3 + х + 1) Q(x) + R(x), причём степень многочлена R(x) меньше степени многочлена (х 3 + х + 1).

Из того, что степень произведения многочленов равна сумме их степеней, следует, что степень многочлена Q(x) равна 7– 3 = 4.

Многочлены Q(x) и R(x) имеют вид: Q(x) = q 4x 4 + q 3x 3 + q 2x 2 + q 1x + q0,
R(x) = r 2x 2 + r 1x + r0.

Подставим Q(x) и R(x):

Раскроем скобки в правой части равенства:

Получаем систему уравнений:

Ответ: Q(x) = x 4 — x 2 — x + 1, R(x) = 2x 2 — 2.

Расположение многочлена по степеням.

Возьмем функцию Поставим перед собой задачу «расположить многочлен по степеням f(x) по степеням (х-х0).

Задача сводится к нахождению неизвестных коэффициентов а0, а1, . аn. В каждом конкретном случае эти числа найти легко. Действительно, расположим многочлены, находящиеся в левой и правой частях равенства, по степеням x. Так как мы имеем тождество, то (по теореме № 2) коэффициенты при одинаковых степенях x должны быть равны между собой. Приравняв коэффициенты правой части соответствующим заданным коэффициентам левой, мы придем к системе n+1 уравнений с n+1 неизвестными а0, а1, . аn , которую нужно решить.

Пример 3. Расположим многочлен по степеням.


Приравниваем коэффициенты при одинаковых степенях и получаем систему:

Решая систему, находим:

Ответ: .

Пример 4. Расположим f(x) = х 4 — 8х 3 + 24х 2 — 50х + 90 по степеням (х-2).

Решение: Полагаем х4 — 8х 3 + 24х 2 — 50х + 90

Ответ: f(x) =

Представление произведения в виде многочлена стандартного вида.

Пример 5. Не выполняя действий, представим в виде многочлена стандартного вида произведение (х — 1)(х + 3)(х + 5).

Решение: Произведение есть многочлен третьей степени, коэффициент при старшем члене равен 1, а свободный член равен (- 15), тогда запишем:

(х — 1)(х + 3)(х + 5) = х 3 + ах 2 + вх — 15, где а и в — неизвестные коэффициенты.

Для вычисления их положим х = 1 и х = — 3, тогда получим:

откуда а =7, в = 7.

Ответ: х 3 +7х 2 + 7х — 15.

Разложение многочлена на множители

Пример 6. Дан многочлен

Разложим его на множители, если известно, сто все его корни – целые числа.

Решение: Будем искать разложение в виде:

полагая числа a, b, c и d его корнями. Раскроем скобки в правой части и сгруппируем по одинаковым степеням.

Приравниваем коэффициенты при одинаковых степенях.

Так как корни нашего многочлена – целые, то из последнего уравнения системы заключаем, что они должны быть делителями числа 30. Следовательно, их следует искать среди чисел

Проведя испытания, установим, что корни нашего многочлена -2, -5, 1 и 3. Следовательно х 4 + 3х 3 — 15х 2 — 19х + 30 = (х — 1)(х — 3)(х + 2)(х + 5)

Пример 7. Дан многочлен .

Разложим его на множители, если известно, сто все его корни – целые числа.

Решение: Будем искать разложение в виде:

полагая числа a, b, c и d его корнями. Раскроем скобки в правой части и сгруппируем по одинаковым степеням.

Приравниваем коэффициенты при одинаковых степенях.

Так как корни нашего многочлена – целые, то из последнего уравнения системы заключаем, что они должны быть делителями числа 84. Следовательно, их следует искать среди чисел

Проведя испытания, установим, что корни нашего многочлена -7,-2,2,3. Следовательно х 4 + 4х 3 — 25х 2 — 16х + 84 = (х — 2)(х — 3)(х + 2)(х + 7)

Пример 8. Разность является целым числом. Найдем это число.

Решение: Так как,

Тогда

Положим где a и b – неизвестные коэффициенты.

Тогда

Решая данную систему уравнений, получим а = 5, b = -4.

Значит так как

Аналогично устанавливаем, что

Следовательно

Пример 9. Является ли разность целым числом.

Решение: Т.к.

тогда —

Положим где a и b – неизвестные коэффициенты.

Тогда откуда

из второго уравнения тогда первое уравнение принимает вид

b 2 = 12,5 — — не удовлетворяет условию задачи, или b 2 = 9, откуда b = -3 или b = 3 — не удовлетворяет числу Значит, а = 5.

Аналогично,

Окончательно получаем: — иррациональное число.

Уничтожение иррациональности в знаменателе

Пример 10. Избавимся от иррациональности в знаменателе:

Решение:

отсюда

Раскроем скобки, сгруппируем:

Ответ:

Пример 11. Избавимся от иррациональности в знаменателе:

Решение: ,

отсюда

Раскроем скобки, сгруппируем

Отсюда

Итак

Следовательно

Ответ:

Применение метода неопределенных коэффициентов при решении уравнений

Пример 12. Решим уравнение х 4 + х 3 — 4х 2 — 9х — 3 = 0.

Решение: Предположим, что корни уравнения — целые числа, тогда их надо искать среди чисел

Если х = 1, то
если х = -1, то
если х = 3, то
если х = -3, то

Отсюда делаем вывод, что рациональных корней наше уравнение не имеет.

Попробуем разложить многочлен на множители в следующем виде:

, где a, b, c и d – целые. Раскроем скобки:

Приравнивая соответствующие коэффициенты выражений для неизвестных a, b, c и d получаем систему уравнений:

Так как bd = -3, то будем искать решения среди вариантов:

Проверим вариант № 2, когда b = —1; d = 3:

Пример 13. Решить уравнение: х 4 — 15х 2 + 12х + 5= 0.

Решение: Разложим многочлен f(х) = х 4 — 15х 2 + 12х + 5 на множители в следующем виде: , где a, b, c и d -целые. Раскроем скобки:

Приравнивая соответствующие коэффициенты выражений для неизвестных a, b, c и d получаем систему уравнений:

Так как , bd = 5, то будем искать решения среди вариантов:

Системе удовлетворяет вариант №2, т.е. а = 3, b = -1, c = -3, d = 5.

Итак,


D =13
D = 29

Ответ:

О решении одного класса кубических уравнений.

Пусть дано кубическое уравнение: а 1 х 3 + b 1х 2 +с 1х +d1 = 0, где а ≠ 0.
Приведём его к виду х 3 + ах 2 +bх + с = 0 (1), где а = , в = , с =
Положим в уравнении (1) х = у + m. Тогда получим уравнение:
Раскроем скобки, сгруппируем: y 3 +3у 2 m + 3ym 2 + m 3 + ay 2 + 2aym +am 2 + by +bm + с = 0,
y 3 + y 2 (a +3m) +y(3m 2 +2am +b) + m 3 +am 2 +bm + с = 0.

Для того, чтобы уравнение (1) было двучленным, должно выполняться условие:

Решения этой системы: m = —; a 2 = 3b. Таким образом, при произвольном с и при a 2 = 3b уравнение подстановкой х = уможно привести к двучленному уравнению третьей степени.

Пример14. Решить уравнение: х 3 + 3х 2 +3х — 9 =0.

Решение: В данном уравнении а = 3, в =3, тогда условие a 2 = 3b выполняется, а m = — = -1. Выполним подстановку х = у -1.

Уравнение принимает вид: (у -1) 3 +3(у -1) 2 +3(у -1) – 9 = 0.
y 3 -3y 2 +3у -1 +3у 2 – 6у +3 +3у –3 – 9 = 0.
y 3 – 10 = 0, откуда у = , а х = — 1.

Ответ: — 1.

Пример15. Решить уравнение: х 3 + 6х 2 + 12х + 5 = 0.

Решение: а = 6, в =12, тогда условие a 2 = 3b (62 = 3×12) выполняется, а m = — = -2.

Выполним подстановку х = у — 2. Уравнение принимает вид: (у -2) 3 +6(у -2) 2 +12(у -2) + 5 = 0.

у 3 – 6у 2 + 12у – 8 + 6у 2 -24у + 24 + 12у – 24 + 5 = 0.
у 3 – 3 = 0, у = , а х = — 2.

Ответ: – 2.

Рассмотренные в работе примеры могут быть решены и другими способами. Но цель работы заключалась в том, чтобы решить их методом неопределённых коэффициентов, показать универсальность этого метода, его оригинальность и рациональность, не отрицая того, что в некоторых случаях он приводит к громоздким, но не сложным преобразованиям.

Математика

58. Способ сложения и вычитания или способ уравнения коэффициентов . Решим совместно следующие 2 уравнения:

7x + 5y = 47 и 7x – 5y = 9 (1)

Мы видим, что в левой части одного уравнения входит член +5y, а в левой части другого — член –5y. Если бы пришлось эти части сложить между собою, то эти члены уничтожились бы. И этого достигнуть легко: из данных двух уравнений составим вытекающее из них новое, для чего сложим и левые части обоих уравнений между собою, и правые части между собою – результаты этих сложений, очевидно, должны быть равны между собою, т. е. получим:

(члены +5y и –5y взаимно уничтожились). Отсюда получим x = 4. Умножим затем обе части второго уравнения на –1; получим:

7x + 5y = 47
–7x + 5y = –9

и теперь опять сложим левые части между собою и правые между собою (говорят: сложим эти 2 уравнения по частям). Получим, так как члены +7x и –7x взаимно уничтожаются:

10y = 38, откуда y = 3,8

Мы могли бы взамен этого сделать и так: вернемся к уравнениям (1) и вычтем по частям (т. е. из левой части левую часть и из правой части правую часть) из первого уравнения второе. Тогда надо у всех членов 2-го уравнения переменить знаки — результат получится тот же самый.

В разобранном примере абсолютные величины коэффициентов при каждом неизвестном в каждом уравнении были равны; рассмотрим теперь пример, когда абсолютные величины этих коэффициентов неравны.

3x + 4y = 23 и 9x + 10y = 65.

Рассматривая эти уравнения, мы видим, что коэффициенты при x не равны, но что их легко сделать равными, если обе части первого уравнения умножим на 3. Сделав это, получим:

9x + 12y = 69
9x + 10y = 65

Теперь вычтем по частям из первого уравнения второе (надо у всех членов 2-го уравнения переменить знаки). Получим:

2y = 4, откуда y = 2.

Рассматривая данные уравнения, мы теперь приходим к возможности уравнять коэффициенты при y, для чего можно поступить по разному: 1) обе части 1-го уравнения умножить на 2 ½ — тогда получим:

7 ½ x + 10y = 57 ½
9x + 10y = 65

Вычтем теперь из 2-го уравнения по частям 1-е, для чего переменим знаки у всех членов 1-го уравнения (мы вычитаем из 2-го первое, а не наоборот, только для того, чтобы в левой части коэффициент при x получился положительный), получим:

1 ½ x = 7 ½, откуда x = 7 ½ : 1 ½ = 5.

2) Обе части 2-го уравнения умножим на 2/5, — получим:
3x + 4y = 23 (первое оставляем без изменения).

Вычитая по частям из 2-го уравнения первое, получим:

3/5 x = 3, откуда x = 3 : 3/5 = 5.

3) Если не желаем иметь дело с дробными коэффициентами, то найдем общее наименьшее кратное для коэффициентов при y, т. е. для чисел 4 и 10 – оно есть 20 и, умножением обеих частей 1-го уравнения и обеих частей 2-го, сведем дело к тому, чтобы в каждом уравнении коэффициентом при y служило это общее наименьшее кратное. В нашем примере для этого умножим обе части 1-го уравнения на 5 и обе части 2-го уравнения на 2. Получим:

15x + 20y = 115
18x + 20y = 130.

Опять вычтем по частям из 2-го уравнения первое, — получим:

3x = 15, откуда x = 5.

Заметим еще, что когда одно неизвестное определено, можно подстановкою получить другое. Так, мы сначала нашли y = 2. Подставим это значение в 1-ое уравнение:

3x = 23 – 8 = 15, откуда x = 5.

Коротко выполним еще один пример:

6x – 15y = 32 | · 3 | · 2
4x + 9y = 34 | · 5 | · 3

Сбоку мы отметили, что надо обе части 1-го уравнения умножить на 3 и обе части 2-го на 5 — мы имеем в виду уравнять абсолютные величины коэффициентов при y. Получим:

18x – 45y = 96.
20x + 45y = 170.

Сложим эти уравнения по частям, получим:

38x = 266 и x = 7.

Теперь умножим обе части 1-го уравнения на 2 и обе части второго на 3 (отмечено сбоку). Получим:

12x – 30y = 64
12x + 27y = 102.

Вычтем по частям из 2-го уравнения первое; получим:

57y = 38 и y = 38/57 = 2/3.

Примем этот способ к решению двух уравнений с двумя неизвестными в общем виде:

ax + by = m | · d | · c
cx + dy = n | · b | · a

Сначала умножим, как отмечено, обе части 1-го уравнения на d и обе части 2-го на b. Получим:

adx + bdy = md
cbx + =bdy = nb.

Вычтем по частям из 1-го уравнения второе, получим:

adx – cbx = md – nb.

Вынесем в левой части x за скобки, получим:

(ad – cb)x = md – nb,

x = (md – nb) / (ad – cb).

Уравняем теперь коэффициенты при x, для чего обе части 1-го уравнения умножим на c и обе части второго на a. Получим:

Вычтем по частям из 2-го уравнения первое, получим:

ady – bcy = na – mc,

(ad – bc) y = na – mc

y = (na – mc) / (ad – bc).

Мы вычитали здесь из 2-го уравнения первое, а не наоборот, с целью получить тот же знаменатель ad – bc, какой получился при определении x – a.

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.


источники:

http://maths-public.ru/algebra1/two-equations2

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij