Решение уравнений в средней школе

Уравнения в курсе математики средней школы»
методическая разработка по алгебре по теме

В работе рассматриваются различные виды уравнений, которые проходят в 5-6 класссах, 7-9 классах и 10-11 классах. /В помощь начинающему учителю/

Скачать:

ВложениеРазмер
rabota.doc691 КБ
uravneniya.ppt772 КБ

Предварительный просмотр:

Департамент науки и образования Пермского края

Из опыта работы по теме:

«Уравнения в курсе математики средней школы»

(В помощь начинающему учителю)

Четина Таисия Филипповна

МОУ «СОШ № 64» города Перми

1. Уравнения в курсе математики (5-6 класс)…………. 5

1.1 Нахождение неизвестных компонентов……………………..…..5

1.2 Раскрытие скобок и приведение подобных……………………..8

1.3 Простейшие уравнения с модулем………………………….…. 9

1.4 Произведение множителей, равное нулю……………………….9

1.5 Решение задач на составление уравнения………………………9

2. Уравнения в курсе алгебры (7-9 класс)…………………12

2.1 Линейные уравнения с одной переменной……………………..12

2.2 Разложение на множители………………………………………14

2.3 Линейные уравнения с двумя переменными…………………. 15

2.4 Системы линейных уравнений………………………………….17

2.5 Квадратные уравнения…………………………………………..21

2.6 Дробно рациональные уравнения………………………………26

2.7 Биквадратные уравнения………………………………………..27

3. УРАВНЕНИЯ В КУРСЕ АЛГЕБРЫ И НАЧАЛ АНАЛИЗА……….29

3.1 Тригонометрические уравнения ………………………………..29

3.2 Уравнения с модулем……………………………………………32

3.3 Показательные уравнения……………………………………….34

3.4 Логарифмические уравнения……………………………………35

3.5 Иррациональные уравнения……………………………………..38

3.6 Уравнения с параметром…………………………………………39

IV. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ…………………….45

Уравнение – одно из важнейших понятий математики. В большинстве практических и научных задач, где какую-то величину нельзя непосредственно измерить или вычислить по готовой формуле, удается составить соотношение (или несколько соотношений), которым оно удовлетворяет. Так получают уравнения (или систему уравнений для определения неизвестной величины). Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры. Привычная нам буквенная запись уравнений сложилась в XVI веке; традиция обозначать неизвестные последними буквами латинского алфавита x, y, z и т.д., а известные величины (параметры) – первыми а, b, с и т.д. идет от французского ученого Р. Декарта.

Как научить детей решать уравнения? Этот вопрос волнует практически всех учителей-математиков и естественников в силу огромной значимости метода уравнений, как для самого курса математики, так и для его практических приложений. Умение решать уравнения настолько важно, что для его формирования нужно привлекать все средства, в том числе и правила, и примеры, и житейские образы. Вооруженные различными приемами, учащиеся всегда смогут помочь себе сами, с какими бы трудностями они ни встретились.

В течении более чем 30 лет педагогической работы, я убедилась в том, что к теме «Уравнения» нужен «особый» подход, исходя из возрастных и психологических особенностей учащихся; их уровня подготовленности.

Я преподаю математику во всех классах средней и старшей школы, в классах общеобразовательных и классах 7-вида. Поэтому я считаю возможным поделиться своим опытом преподавания темы «Уравнения» с учителями, испытывающими затруднения в методике преподавания этой темы и начинающими учителями.

В своей работе тему «Уравнения» я рассматриваю в развитии, от простейших до трансцендентных. Еще в начальной школе учащиеся знакомятся с компонентами арифметических действий и учатся находить неизвестные компоненты по известным. В основной школе вводятся основные понятия и термины; в центре внимания – овладение алгоритмами решения основных видов рациональных уравнений. На старшей ступени обучения расширяется класс изучаемых уравнений в связи с введением новых видов функций; развиваются представления об общих приемах решения уравнений.

Выделим следующие этапы процесса обобщения приемов решения уравнений:

-решение простейших уравнений данного вида;

-анализ действий, необходимых для их решения ;

-вывод алгоритма решения и запоминание его;

-решение несложных уравнений данного вида, не являющихся простейшими;

-анализ действий, необходимых для их решения;

-формулировка частного приема решения;

-применение полученного частного приема по образцу

-работа по описанным этапам для следующих видов уравнений согласно программе.

Учитель руководит всем процессом обобщения, его деятельность направлена на создание ситуаций для реализации этой схемы в процессе поэтапного формирования приемов: подбор упражнений и вопросов для диагностики и контроля, помощь учащимся в осознании состава приема решения уравнения, его формулировки, отработки и применения.

Одной из основных целей, которые ставит перед собой учитель математики, является научить учащихся решать уравнения и впоследствии применять эти навыки при сдаче ЕГЭ и в дальнейшей учебе.

I I. Уравнения в курсе математики

Тема «Уравнение» проходит красной нитью в курсе математики с 1 класса по 11 класс. Именно поэтому данной теме уделяю особое внимание уже с 5 класса. Здесь акцентирую внимание на определении уравнения, корней уравнения, понятии «решить уравнение».

Уравнением называется равенство с переменной.

Корнем уравнения называется значение переменной, обращающее данное уравнение в верное числовое равенство.

Решить уравнение – это значит найти все его корни или доказать, что их нет.

1.1 В 5 классе рассматриваются уравнения вида а+х=в, а-х=в, х-а=в, ах=в, а:х=в, х:а=в , где а и в – это некоторые числа, х – переменная.

При этом учащиеся решают уравнения, пользуясь правилами нахождения неизвестных компонентов : слагаемого, уменьшаемого, вычитаемого, множителя, делимого, делителя, известных ученикам из курса математики начальной школы. Здесь учу детей делать неформальную проверку корней уравнения. Уместно сразу же научить детей решать задачи с помощью уравнения, правильно оформлять условие задачи, ее решение. Рассмотрим, например, такую задачу : « В вазе лежали сливы. Утром в нее добавили еще 20 слив, после чего в ней стало 38 слив. Сколько слив было в вазе?»

Добавили – 20 слив.

Записываем решение задачи:

Пусть было х слив, тогда после добавления 20 слив стало (х+20) слив. Известно, что стало 38 слив. Составим и решим уравнение:

х=18 ; 18 слив было.

При этом пользуемся правилом нахождения неизвестного слагаемого.

При решении аналогичных задач отрабатываю алгоритм решения : Пусть…., тогда….. Известно, что….

Составим и решим уравнение.

Дети легко запоминают этот алгоритм и, пользуясь им, быстрее, а главное, обдуманно, решают задачи.

Детям, которые забывают правила нахождения неизвестных компонентов, можно помочь вспомнить правило или, лучше сказать, изобрести нужное правило, если приучить их придумывать простой числовой пример в тех случаях, когда возникают сомнения в том, какое действие надо вспомнить для решения уравнения. Этот способ полезно рассказать подробно, оформив его в виде правила из трех пунктов.

Рассмотрим это для решения уравнения:

Придумав пример на такое же действие, как и в уравнении, но с числами, которые не больше 10 (6:2=3).

Запишите пример точно над уравнением так, чтобы знаки действий и знаки равенства располагались друг над другом.

Выделите в примере число, стоящее над неизвестным в уравнении, и определите действия, которыми можно найти это выделенное число, пользуясь другими числами примера. Тем же действием следует найти и неизвестное в уравнении.

После изучения распределительного закона умножения рассматриваем уравнения вида ах+вх+с=d, где а, в, с, d – некоторые числа, х – переменная, уравнение вида (ах  вх)∙с=d, (ах  вх):с=d и т.д., сводящиеся к рассмотренным ранее.

При решении уравнений вида (ах+в):с=d, часто пользуются образом клубочка, который необходимо размотать . Для этого надо сначала найти конец нити, то есть определить «последнее» действие в одной из частей уравнения, и потом, ухватившись за эту нить, сделать в другой части «все наоборот», подобно тому, как мы поступаем, перематывая нить с одной катушки на другую.

Например , дано уравнение вида (ах+b):с=d. В левой части сначала х умножаем на а, потом прибавляем в и делим на с. Значит «последнее» действие в левой части – деление на с. Тогда первым действием в правой части должно быть умножение на с. Имеем ах+b=d∙с. Разматываем клубочек дальше. Теперь «последним» действием в левой части должно быть вычитание: ах=dс – b. Осталось в левой части действие умножение, а в правой оно заменяется делением. Итак, х=(d∙с-b):а.

При изучении темы «Проценты » обращаю внимание на то, что процент – это сотая часть числа, а часть числа находится действием умножения. Здесь рассматривают 2 типа задач :

а) нахождение числа по его проценту:

Задача 1 . В соревнованиях по легкой атлетике приняло участие 20 девочек, что составило 40% всех участников. Сколько спортсменов участвовало в соревнованиях?

Всего – 100% — 7 чел. 40% =0,4

Девочек – 40% — 20 чел.

Пусть всего х спортсменов участвовало в соревнованиях, тогда 0,4х было девочек. Известно, что девочек было 20 человек. Составим уравнение:

х=50; 50 спортсменов было всего.

Ответ: 50 спортсменов.

б) нахождение процентов от числа:

Задача 2 . Туристы должны были пройти 220 км. В первый день надо пройти 33 км. Сколько процентов пути надо пройти туристам в первый день?

Всего : 100% — 220 км.

1 день: ? % — 33 км.

Пусть х% пройдено в 1 день. 1% составляет 220:100=2,2 (км), тогда х% составляют 2,2х км. Известно, что это равно 33 км.

х=15; 15% пройдено в первый день.

Эти задачи решаем и по действиям.

К концу 5 класса ученики достаточно быстро оформляют условие задачи, ее решение, грамотно записывают ответ, сводя при этом задачу к решению уравнения.

1.2 В 6 классе после введения отрицательных чисел уравнения решаются с использованием нескольких тем: раскрытием скобок , переносом слагаемых из одной части уравнения в другую с противоположным знаком, приведением подобных, а также делением или умножением обеих частей уравнения на одно и то же, отличное от нуля, число.

Нужно отметить, что не все уравнения имеют решения.

Ответ: нет корней. Ответ: х — любое число.

1.3 После изучения темы «Модуль » мы встречаемся с решением уравнений, содержащих неизвестную под знаком модуля.

Например: а) |х|=5 б) |х|=0 в) |х|=-10

х 1 =5, х 2 =-5 х=0 Ǿ

Ответ:  5 Ответ: 0 Ответ: Ǿ

Считаю, что здесь же уместно рассмотреть уравнения, содержащие под знаком модуля выражения с неизвестной.

а) |х-5|=3 б) |3х-7|=0 в) |4х+15|=-4

х-5=3 или х-5=-3 3х-7=0 Ǿ

х=8 х=2 3х=7 Ответ: Ǿ

1.4 Целесообразно уже с 6 класса научить учеников решать уравнения вида (ах  b)(сх  d)=0 , то есть когда произведение нескольких множителей равно нулю. При этом пользуемся правилом: «Произведение двух или более множителей равно нулю тогда и только тогда, когда один из множителей равен нулю». О том, что другие множители при этом не теряют смысла, еще не упоминаю, так как считаю, что это еще нецелесообразно.

у=0 или 15у-24=0 или 3у-0,9=0

1.5 В конце 6 класса встречаются задачи, решаемые с помощью уравнения , когда условие задачи удобно оформить в виде таблицы. Покажем это на примере следующей задачи: «В одной корзине было в 3 раза меньше яблок, чем в другой. Когда в первую корзину добавили еще 25 яблок, а из второй взяли 15 яблок, то в обеих корзинах стало поровну. Сколько яблок было в каждой корзине первоначально?

Методика изучения уравнений и неравенств в средней школе

Тема “Уравнения и неравенства” является одной из самых основных тем школьного курса математики. Она имеет большое внутрипредметное и межпредметное значение. Внутрипредметные связи: тема связана с темой “Функции” и темой “Тождественные преобразования”. Межпредметные связи: тема широко используется в физике и химии. Основная задача темы – освоить способы решения различных видов уравнений и неравенств.

Основными понятиями темы являются:

  1. уравнение, неравенство;
  2. корень уравнения, решение неравенства;
  3. равносильность уравнений, равносильность неравенств.

Понятие уравнение рассматривается дважды: в 5 классе, как равенство, содержащее неизвестное, (здесь понятие вводится конкретно-индуктивным методом через решение задачи, используя картинку с весами) и в 7 классе, где вводится уже точное определение уравнения: уравнение – это равенство, содержащее переменную. Здесь же вводятся понятия “корень уравнения” и “решить уравнение”. В 7 классе вводится и понятие “равносильные уравнения”, формулируются теоремы о равносильных преобразованиях. Эти теоремы формулируются в виде свойств, они не доказываются, а поясняются на примерах.

С числовыми неравенствами 2 5 учащиеся знакомятся в начальной школе. В 5 классе вводится двойное неравенство: 1 , ?, ? называется неравенством.

Понятие “решение неравенства” удобно вводить по аналогии с понятием “корень уравнения”.

5x – 4 = 11

Является ли число 3 корнем уравнения? Почему? Добиться полной формулировки ответа: число 3 является корнем уравнения, т.к. при этом значении переменной уравнение обращается в верное равенство.

5x – 4 > 11

Обращает ли число 4 данное неравенство в верное числовое неравенство? Да. Кто сможет дать определение, что называется решением неравенства? Решением неравенства называется значение переменной, которое обращает его в верное числовое неравенство. Далее решаются номера на усвоение.

А можно ли указать все решения неравенства? Встает вопрос, как изобразить все решения неравенства? Учитель сообщает, что оказывается, решения неравенства изображаются на координатной прямой, а ответ записывается с помощью числовых прямых. После этого необходимо рассмотреть всевозможные случаи неравенств и их решений.

При обучении решению любого вида уравнений и неравенств строго соблюдается методика формирования математических умений. Например, в 5 классе решаются линейные уравнения, которые содержат переменную только в одной части. Записывается на доске уравнение: 52 + (3x – 14) = 62. Что представляет собой левая часть уравнения? Сумма. Назовите слагаемые. Какое слагаемое известно? В каком из компонентов содержится неизвестное? Как найти неизвестное слагаемое? 3x – 14 = 10. Что представляет собой левая часть уравнения? Разность. В каком из компонентов содержится неизвестное? Как найти уменьшаемое? 3x = 24. Что представляет собой левая часть уравнения? Произведение. Назовите множители. Какой множитель известен? В каком из компонентов содержится неизвестное? Как найти неизвестный множитель? x = 8. Как проверить, что число 8 является корнем уравнения? 52 + (3 ? 8 – 14) = 62 ? 62 = 62. После этого составляем и записываем в тетрадь правило решения таких уравнений:

  1. определяем вид уравнения по последнему действию;
  2. определить, что неизвестно и найти неизвестное по соответствующему правилу;
  3. в случае необходимости, повторит шаги 1 – 2;
  4. найти корень уравнения;
  5. выполнить проверку;
  6. записать ответ.

Учитель показывает образец решения на доске. После этого переходим к решению упражнений на отработку каждого шага правила.

Методические основы решения уравнений:

  1. определяем условия, когда уравнения не имеет решения;
  2. выделяем промежуток, на котором уравнение имеет единственное решение, словесно описываем решение уравнения, вводим символическую запись решения уравнения на этом промежутке;
  3. другие решения уравнения, если они есть, выражаем через это решение и записываем все решения данного уравнения.

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.


источники:

http://neudov.net/4students/otvety-po-tmom/metodika-izucheniya-uravnenij-i-neravenstv-v-srednej-shkole/

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij