Решение уравнений второго порядка методом крамера

Онлайн калькулятор. Решение систем линейных уравнений методом Крамера

Используя этот онлайн калькулятор для решения систем линейных уравнений (СЛУ) методом Крамера, вы сможете очень просто и быстро найти решение системы.

Воспользовавшись онлайн калькулятором для решения систем линейных уравнений методом Крамера, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на решения систем линейных уравнений, а также закрепить пройденный материал.

Решить систему линейных уравнений методом Крамера

Изменить названия переменных в системе

Заполните систему линейных уравнений:

Ввод данных в калькулятор для решения систем линейных уравнений методом Крамера

  • В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
  • Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа.
  • Если в уравнение отсутствует какая-то переменная, то в соответствующем поле ввода калькулятора введите ноль.
  • Если в уравнение перед переменной отсутствуют числа, то в соответствующем поле ввода калькулятора введите единицу.

Например, линейное уравнение x 1 — 7 x 2 — x 4 = 2

будет вводится в калькулятор следующим образом:

Дополнительные возможности калькулятора для решения систем линейных уравнений методом Крамера

  • Между полями для ввода можно перемещаться нажимая клавиши «влево», «вправо», «вверх» и «вниз» на клавиатуре.
  • Вместо x 1, x 2, . вы можете ввести свои названия переменных.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Метод Крамера. Примеры решения систем линейных алгебраических уравнений методом Крамера.

Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Решение системы уравнений методом Крамера проходит за три шага простого алгоритма:

  1. Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. $\Delta\neq 0$.
  2. Для каждой переменной $x_i$($i=\overline<1,n>$) необходимо составить определитель $\Delta_$, полученный из определителя $\Delta$ заменой i-го столбца столбцом свободных членов заданной СЛАУ.
  3. Найти значения неизвестных по формуле $x_i=\frac<\Delta_>><\Delta>$ ($i=\overline<1,n>$).

Перед переходом к чтению примеров рекомендую ознакомиться с правилами вычисления определителей второго и третьего порядка, изложенными здесь.

Матрица системы такова: $ A=\left( \begin 3 & 2\\ -1 & 5 \end \right)$. Определитель этой матрицы:

$$\Delta=\left| \begin 3 & 2\\ -1 & 5 \end\right|=3\cdot 5-2\cdot(-1)=17.$$

Как вычисляется определитель второго порядка можете глянуть здесь.

Так как определитель системы не равен нулю, то продолжаем решение методом Крамера. Вычислим значения двух определителей: $\Delta_$ и $\Delta_$. Определитель $\Delta_$ получаем из определителя $\Delta=\left| \begin 3 & 2\\ -1 & 5 \end\right|$ заменой первого столбца (именно этот столбец содержит коэффициенты при $x_1$) столбцом свободных членов $\left(\begin -11\\ 15\end\right)$:

Аналогично, заменяя второй столбец в $\Delta=\left|\begin3&2\\-1&5\end\right|$ столбцом свободных членов, получим:

Теперь можно найти значения неизвестных $x_1$ и $x_2$.

В принципе, можно ещё проверить, правильно ли решена система методом Крамера. Подставим в заданную СЛАУ $x_1=-5$, $x_2=2$:

Проверка пройдена, решение системы уравнений методом Крамера найдено верно. Осталось лишь записать ответ.

$$\Delta=\left| \begin 2 & 1 & -1\\ 3 & 2 & 2 \\ 1 & 0 & 1 \end\right|=4+2+2-3=5.$$

Как вычисляется определитель третьего порядка можете глянуть здесь.

Заменяя первый столбец в $\Delta$ столбцом свободных членов, получим $\Delta_$:

$$ \Delta_=\left| \begin 3 & 1 & -1\\ -7 & 2 & 2 \\ -2 & 0 & 1 \end\right|=6-4-4+7=5. $$

Заменяя второй столбец в $\Delta$ столбцом свободных членов, получим $\Delta_$:

$$ \Delta_=\left| \begin 2 & 3 & -1\\ 3 & -7 & 2 \\ 1 & -2 & 1 \end\right|=-14+6+6-7-9+8=-10. $$

Заменяя третий столбец в $\Delta$ столбцом свободных членов, получим $\Delta_$:

$$ \Delta_=\left| \begin 2 & 1 & 3\\ 3 & 2 & -7 \\ 1 & 0 & -2 \end\right|=-8-7-6+6=-15. $$

Учитывая все вышеизложенное, имеем:

Метод Крамера завершён. Можно проверить, верно ли решена система уравнений методом Крамера, подставив значения $x_1=1$, $x_2=-2$ и $x_3=-3$ в заданную СЛАУ:

Проверка пройдена, решение системы уравнений методом Крамера найдено верно.

Решить СЛАУ $\left\ <\begin& 2x_1+3x_2-x_3=15;\\ & -9x_1-2x_2+5x_3=-7. \end\right.$ используя метод Крамера.

Матрица системы $ \left( \begin 2 & 3 & -1\\ -9 & -2 & 5 \end \right) $ не является квадратной. Однако это вовсе не означает, что решение системы уравнений методом Крамера невозможно. Преобразуем заданную СЛАУ, перенеся переменную $x_3$ в правые части уравнений:

Теперь матрица системы $ \left( \begin 2 & 3 \\ -9 & -2 \end \right) $ стала квадратной, и определитель её $\Delta=\left| \begin 2 & 3\\ -9 & -2 \end\right|=-4+27=23$ не равен нулю. Применим метод Крамера аналогично предыдущим примерам:

Ответ можно записать в таком виде: $\left\ <\begin& x_1=\frac<13x_3-9><23>;\\ & x_2=\frac<-x_3+121><23>;\\ & x_3\in R. \end\right.$ Переменные $x_1$, $x_2$ – базисные (в иной терминологии – основные), а переменная $x_3$ – свободная (в иной терминологии – неосновная). Проверка, при необходимости, проводится так же, как и в предыдущих примерах.

Матрица системы $\left(\begin 1 & -5 & -1 & -2 & 3 \\ 2 & -6 & 1 & -4 & -2 \\ -1 & 4 & 5 & -3 & 0 \end\right)$ не является квадратной. Преобразуем заданную СЛАУ, перенеся переменные $x_4$, $x_5$ в правые части уравнений, и применим метод Крамера:

Естественно, что применение метода Крамера в случаях вроде того, что рассмотрен в примере №4, не всегда оправдано с точки зрения временных затрат. Мы ведь не можем гарантировать, что после переноса каких-либо переменных в правые части уравнений, определитель системы не будет равен нулю. А перебирать различные варианты – слишком долгий процесс. Гораздо удобнее в таком случае применить метод Гаусса. Я привёл пример №4 лишь с одной целью – показать, что метод Крамера применим вне зависимости от содержимого правых частей уравнений заданной СЛАУ (числа, переменные, функции – не имеет значения). Главное, чтобы определитель матрицы системы был отличен от нуля.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Метод Крамера онлайн

Данный онлайн калькулятор находит решение системы линейных уравнений (СЛУ) методом Крамера. Дается подробное решение. Для вычисления выбирайте количество переменных. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Метод Крамера

Метод Крамера − это метод решения квадратной системы линейных уравнений с отличным от нуля определителем основной матрицы. Такая система линейных уравнений имеет единственное решение.

Пусть задана следующая система линейных уравнений:

(1)

Заменим данную систему (1) эквивалентным ей матричным уравнением

Ax=b(2)

где A -основная матрица системы:

(3)

а x и b − векторы столбцы:

первый из которых нужно найти, а второй задан.

Так как мы предполагаем, что определитель Δ матрицы A отличен от нуля, то существует обратная к A матрица A -1 . Тогда умножая тождество (2) слева на обратную матрицу A -1 , получим:

A -1 Ax=A -1 b.

Учитывая, что произведение взаимно обратных матриц является единичной матрицей (A -1 A=E), получим

x=A -1 b.(4)

Обратная матрица имеет следующий вид:

(5)

где Aij − алгебраическое дополнение матрицы A, Δ − определитель матрицы A.

где Δi − это определитель матрицы, полученной из матрицы A, заменой столбца i на вектор b.

Мы получили формулы Крамера:

Алгоритм решения системы линейных уравнений методом Крамера

  1. Вычислить определитель Δ основной матрицы A.
  2. Замена столбца 1 матрицы A на вектор свободных членов b.
  3. Вычисление определителя Δ1 полученной матрицы A1.
  4. Вычислить переменную x11/Δ.
  5. Повторить шаги 2−4 для столбцов 2, 3, . n матрицы A.

Примеры решения СЛУ методом Крамера

Пример 1. Решить следующую систему линейных уравнений методом Крамера:

Запишем ее в матричной форме: Ax=b, где

.

Вычислим определитель основной матрицы A:

.

Заменим столбец 1 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A1:

.

Заменим столбец 2 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A2:

.

Заменим столбец 3 матрицы A на вектор столбец b:

.

Вычислим определитель матрицы A3:

.

Решение системы линейных уравнений вычисляется так:

Пример 2. Решить следующую систему линейных уравнений методом Крамера:

Запишем ее в матричной форме: Ax=b, где

Найдем определитель матрицы A. Для вычисления определителя матрицы, приведем матрицу к верхнему треугольному виду.

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3,4 со строкой 1, умноженной на -1/4,-3/4,-2/4 соответственно:

Выбираем самый большой по модулю ведущий элемент столбца 2. Для этого меняем местами строки 2 и 4. При этом меняется знак определителя на «−».

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строки 3,4 со строкой 2, умноженной на -26/76,2/76 соответственно:

Выбираем самый большой по модулю ведущий элемент столбца 3. Для этого меняем местами строки 3 и 4. При этом меняется знак определителя на «+».

Исключим элементы 3-го столбца матрицы ниже главной диагонали. Для этого сложим строку 4 со строкой 3, умноженной на -817/1159:

Мы привели матрицу к верхнему треугольному виду. Определитель матрицы равен произведению всех элементов главной диагонали:

Заменим столбец 1 матрицы A на вектор столбец b:

Для вычисления определителя матрицы A1, приведем матрицу к верхнему треугольному виду, аналогично вышеизложенной процедуре. Получим следующую матрицу:

Определитель матрицы равен произведению всех элементов главной диагонали:

Заменяем столбец 2 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Заменяем столбец 3 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Заменяем столбец 4 матрицы A на вектор столбец b, приводим матрицу к верхнему треугольному виду и вычисляем определитель матрицы:

Решение системы линейных уравнений вычисляется так:


источники:

http://math1.ru/education/sys_lin_eq/kramer.html

http://matworld.ru/calculator/kramer-method-online.php