Решение уравнений высших степеней задания

Уравнения высших степеней
методическая разработка по алгебре (10 класс) на тему

Рассмотренны шесть различных типов уравнений высших степеней и тексты контрольной работы в четырёх вариантах!

Скачать:

ВложениеРазмер
уравнения высших степеней101.75 КБ

Предварительный просмотр:

Подписи к слайдам:

Уравнения высших степеней (корни многочлена от одной переменной).

П лан лекции. № 1 . Уравнения высших степеней в школьном курсе математики. № 2 . Стандартный вид многочлена. № 3 .Целые корни многочлена. Схема Горнера. № 4. Дробные корни многочлена. № 5. Уравнения вида: ( х + а )( х + в )( х + с ) … = А № 6. Возвратные уравнения. № 7. Однородные уравнения. № 8. Метод неопределенных коэффициентов. № 9. Функционально – графический метод. № 10. Формулы Виета для уравнений высших степеней. № 11. Нестандартные методы решения уравнений высших степеней.

Уравнения высших степеней в школьном курсе математики . 7 класс. Стандартный вид многочлена. Действия с многочленами. Разложение многочлена на множители. В обычном классе 42 часа , в спец классе 56 часов. 8 спецкласс . Целые корни многочлена, деление многочленов, возвратные уравнения, разность и сумма п – ых степеней двучлена, метод неопределенных коэффициентов. Ю.Н. Макарычев « Дополнительные главы к школьному курсу алгебры 8 класса», М.Л.Галицкий Сборник задач по алгебре 8 – 9 класс». 9 спецкласс . Рациональные корни многочлена. Обобщенные возвратные уравнения. Формулы Виета для уравнений высших степеней. Н.Я. Виленкин « Алгебра 9 класс с углубленным изучением. 11 спецкласс . Тождественность многочленов. Многочлен от нескольких переменных. Функционально – графический метод решения уравнений высших степеней.

Стандартный вид многочлена. Многочлен Р( х ) = а ⁿ х ⁿ + а п-1 х п-1 + … + а₂х ² + а₁х + а₀. Называется многочленом стандартного вида. а п х ⁿ — старший член многочлена а п — коэффициент при старшем члене многочлена. При а п = 1 Р( х ) называется приведенным многочленом. а ₀ — свободный член многочлена Р( х ). п – степень многочлена.

Целые корни многочлена. Схема Горнера. Теорема № 1. Если целое число а является корнем многочлена Р( х ), то а – делитель свободного члена Р( х ). Пример № 1 . Решите уравнение. Х⁴ + 2х³ = 11х² – 4х – 4 Приведем уравнение к стандартному виду. Х⁴ + 2х³ — 11х² + 4х + 4 = 0. Имеем многочлен Р( х ) = х ⁴ + 2х³ — 11х² + 4х + 4 Делители свободного члена: ± 1, ± 2, ±4. х = 1 корень уравнения т.к. Р(1) = 0, х = 2 корень уравнения т.к. Р(2) = 0 Теорема Безу. Остаток от деления многочлена Р( х ) на двучлен ( х – а) равен Р(а). Следствие. Если а – корень многочлена Р( х ), то Р( х ) делится на ( х – а ). В нашем уравнении Р( х ) делится на ( х – 1) и на ( х – 2), а значит и на ( х – 1) ( х – 2). При делении Р( х ) на ( х ² — 3х + 2) в частном получается трехчлен х ² + 5х + 2 = 0, который имеет корни х =( -5 ± √17)/2

Дробные корни многочлена. Теорема №2. Если р / g корень многочлена Р( х ), то р – делитель свободного члена, g – делитель коэффициента старшего члена Р( х ). Пример № 2. Решите уравнение. 6х³ — 11х² — 2х + 8 = 0. Делители свободного члена: ±1, ±2, ±4, ±8. Ни одно из этих чисел не удовлетворяет уравнению. Целых корней нет. Натуральные делители коэффициента старшего члена Р( х ): 1, 2, 3, 6. Возможные дробные корни уравнения: ±2/3, ±4/3, ±8/3. Проверкой убеждаемся, что Р(4/3) = 0. Х = 4/3 корень уравнения. По схеме Горнера разделим Р( х ) на ( х – 4/3).

Примеры для самостоятельного решения. Решите уравнения: 9х³ — 18х = х – 2, х ³ — х ² = х – 1, х ³ — 3х² -3х + 1 = 0, Х ⁴ — 2х³ + 2х – 1 = 0, Х⁴ — 3х² + 2 = 0, х ⁵ + 5х³ — 6х² = 0, х ³ + 4х² + 5х + 2 = 0, Х⁴ + 4х³ — х ² — 16х – 12 = 0 4х³ + х ² — х + 5 = 0 3х⁴ + 5х³ — 9х² — 9х + 10 = 0. Ответы: 1) ±1/3; 2 2) ±1, 3) -1; 2 ±√3 , 4) ±1, 5) ± 1; ±√2 , 6) 0; 1 7) -2; -1, 8) -3; -1; ±2, 9) – 5/4 10) -2; — 5/3; 1.

Уравнения вида ( х + а)( х + в)( х + с )( х + d )… = А. Пример №3 . Решите уравнение ( х + 1)( х + 2)( х + 3)( х + 4) =24. а = 1, в = 2, с = 3, d = 4 а + d = в + с. Перемножаем первую скобку с четвертой и вторую с третьей. ( х + 1)( х + 4)( х + 20( х + 3) = 24. ( х ² + 5х + 4)( х ² + 5х + 6) = 24. Пусть х ² + 5х + 4 = у, тогда у( у + 2) = 24, у² + 2у – 24 = 0 у₁ = — 6, у₂ = 4. х ² + 5х + 4 = -6 или х ² + 5х + 4 = 4. х ² + 5х + 10 = 0, Д о при х > о. Функция f ( х ) возрастающая при х > о, а значение f (о) = -2. Очевидно, что уравнение имеет один положительный корень ч.т.д. Пример №17. Решите уравнение 8х(2х² — 1)(8х⁴ — 8х² + 1) = 1. И.Ф.Шарыгин « Факультативный курс по математике для 11 класса».М. Просвещение 1991 стр90. 1. l х l 1 2х² — 1 > 1 и 8х⁴ -8х² + 1 > 1 2. Сделаем замену х = cosy , у € (0; п ). При остальных значениях у, значения х повторяются, а уравнение имеет не более 7 корней. 2х² — 1 = 2 cos²y – 1 = cos2y , 8х⁴ — 8х² + 1 = 2(2х² — 1)² — 1 = 2 cos²2y – 1 = cos4y . 3. Уравнение принимает вид 8 cosycos2ycos4y = 1. Умножаем обе части уравнения на siny . 8 sinycosycos2ycos4y = siny . Применяя 3 раза формулу двойного угла получим уравнение sin8y = siny , sin8y – siny = 0

Окончание решения примера №17. Применяем формулу разности синусов. 2 sin7y/2 · cos9y/2 = 0 . Учитывая, что у € (0;п), у = 2пк/3, к = 1, 2, 3 или у = п /9 + 2пк/9, к =0, 1, 2, 3. Возвращаясь к переменной х получаем ответ: Cos2 п /7, cos4 п /7, cos6 п /7, cos п /9, ½, cos5 п /9, cos7 п /9 . Примеры для самостоятельного решения. Найти все значения а, при которых уравнение ( х ² + х )( х ² + 5х + 6) = а имеет ровно три корня. Ответ: 9/16. Указание: построить график левой части уравнения. F max = f(0) = 9/16 . Прямая у = 9/16 пересекает график функции в трех точках. Решите уравнение ( х ² + 2х)² — ( х + 1)² = 55. Ответ: -4; 2. Решите уравнение ( х + 3)⁴ + ( х + 5)⁴ = 16. Ответ: -5; -3. Решите уравнение 2( х ² + х + 1)² -7( х – 1)² = 13( х ³ — 1).Ответ: -1; -1/2, 2;4 Найдите число действительных корней уравнения х ³ — 12х + 10 = 0 на [-3; 3/2]. Указание: найти производную и исследовать на монот .

Примеры для самостоятельного решения ( продолжение). 6. Найдите число действительных корней уравнения х ⁴ — 2х³ + 3/2 = 0. Ответ: 2 7. Пусть х ₁, х ₂, х ₃ — корни многочлена Р( х ) = х ³ — 6х² -15х + 1. Найдите Х₁² + х ₂² + х ₃². Ответ: 66. Указание: примените теорему Виета. 8. Докажите, что при а > о и произвольном вещественном в уравнение х ³ + ах + в = о имеет только один вещественный корень. Указание: проведите доказательство от противного. Примените теорему Виета. 9. Решите уравнение 2( х ² + 2)² = 9( х ³ + 1). Ответ: ½; 1; (3 ± √13)/2. Указание: приведите уравнение к однородному, используя равенства Х² + 2 = х + 1 + х ² — х + 1, х ³ + 1 = ( х + 1)( х ² — х + 1). 10. Решите систему уравнений х + у = х ², 3у – х = у². Ответ: (0;0),(2;2), (√2; 2 — √2), (- √2 ; 2 + √2). 11. Решите систему: 4у² -3ху = 2х –у, 5х² — 3у² = 4х – 2у. Ответ: ( о;о ), (1;1),(297/265; — 27/53).

Контрольная работа. 1 вариант. 1. Решите уравнение ( х ² + х ) – 8( х ² + х ) + 12 = 0. 2. Решите уравнение ( х + 1)( х + 3)( х + 5)( х + 7) = — 15. 3. Решите уравнение 12х²( х – 3) + 64( х – 3)² = х ⁴. 4. Решите уравнение х ⁴ — 4х³ + 5х² — 4х + 1 = 0 5. Решите систему аравнений : х ² + 2у² — х + 2у = 6, 1,5х² + 3у² — х + 5у = 12.

2 вариант 1. ( х ² — 4х)² + 7( х ² — 4х) + 12 = 0. 2. х ( х + 1)( х + 5)( х + 6) = 24. 3. х ⁴ + 18( х + 4)² = 11х²( х + 4). 4. х ⁴ — 5х³ + 6х² — 5х + 1 = 0. 5. х ² — 2ху + у² + 2х²у – 9 = 0, х – у – х²у + 3 = 0. 3 вариант . 1. ( х ² + 3х)² — 14( х ² + 3х) + 40 = 0 2. ( х – 5)(х-3)( х + 3)( х + 1) = — 35. 3. х4 + 8х²( х + 2) = 9( х+ 2)². 4. х ⁴ — 7х³ + 14х² — 7х + 1 = 0. 5. х + у + х ² + у ² = 18, ху + х ² + у² = 19.

4 вариант. ( х ² — 2х)² — 11( х ² — 2х) + 24 = о. ( х -7)(х-4)(х-2)( х + 1) = -36. Х⁴ + 3( х -6)² = 4х²(6 – х ). Х⁴ — 6х³ + 7х² — 6х + 1 = 0. Х² + 3ху + у² = — 1, 2х² — 3ху – 3у² = — 4. Дополнительное задание: Остаток от деления многочлена Р( х ) на ( х – 1) равен 4, остаток от делении на ( х + 1) равен2, а при делении на ( х – 2) равен 8. Найти остаток от деления Р( х ) на ( х ³ — 2х² — х + 2).

Ответы и указания: вариант № 1 № 2. № 3. № 4. № 5. 1. — 3; ±2; 1 1;2;3. -5; -4; 1; 2. Однородное уравнение: u = x -3, v =x² -2 ; -1; 3; 4. (2;1); (2/3;4/3). Указание: 1·(-3) + 2· 2 2. -6; -2; -4±√6. -3±2√3; — 4; — 2. 1±√11; 4; — 2. Однородное уравнение : u = x + 4, v = x² 1 ; 5;3±√13. (2;1); (0;3); ( — 3; 0). Указание: 2· 2 + 1. 3. -6; 2; 4; 12 -3; -2; 4; 12 -6; -3; -1; 2. Однородное u = x+ 2, v = x² -6 ; ±3; 2 (2;3), (3;2), (-2 + √7; -2 — √7); (-2 — √7; -2 + √7). Указание: 2 -1. 4. (3±√5)/2 2±√3 2±√3; (3±√5)/2 (5 ± √21)/2 (1;-2), (-1;2). Указание: 1·4 + 2 .

Решение дополнительного задания. По теореме Безу: Р(1) = 4, Р(-1) = 2, Р(2) = 8. Р( х ) = G(x) ( х ³ — 2х² — х + 2) + ах² + вх + с. Подставляем 1; — 1; 2. Р(1) = G(1) ·0 + а + в + с = 4, а + в+ с = 4. Р(-1) = а – в + с = 2, Р(2) = 4а² + 2в + с = 8. Решая полученную систему из трех уравнений получим: а = в = 1, с = 2. Ответ: х ² + х + 2.

Критерий № 1 — 2 балла. 1 балл – одна вычислительная ошибка. № 2,3,4 – по 3 балла. 1 балл – привели к квадратному уравнению. 2 балла – одна вычислительная ошибка. № 5. – 4 балла. 1 балл – выразили одну переменную через другую. 2 балла – получили одно из решений. 3 балла – одна вычислительная ошибка. Дополнительное задание: 4 балла. 1 балл – применили теорему Безу для всех четырех случаев. 2 балла – составили систему уравнений. 3 балла – одна вычислительная ошибка.

По теме: методические разработки, презентации и конспекты

Способы решения уравнений высших степеней. 8 класс

Данную презентацию использую при решении уравнений высших степеней в 8 классе. Решать квадратные уравнения школьники научились по формулам, а если уравнение выше второй степени? Есть ли алгоритм.

Конспект урока. Тема: «Решение уравнений высших степеней» 8 класс

Полное описание урока. Как решать уравнения выше второго порядка? Есть ли алгоритм решения? На эти и другие вопросы отвечает данный материал.

Урок-защита проектов «Решение уравнений высших степеней» 9 класс

Конспект урока по алгебре в 9 классе «Решение уравнений высших степеней», на котором учащиеся защищали свои проекты.Презентации учащихся: Решение биквадратных уравнений, Решение возвратных уравнений, .

Открытый урок по алгебре «Уравнения высших степеней»

урок по алгебре «Уравнения высших степеней».

Презентация программы элективного курса для 9-х классов «В мире уравнений высших степеней»

Это презентация поможет сформировать программу элективного курса для предпрофильной подготовки девятиклассников по теме «В мире уравнений высших степеней».

Уравнения высших степеней

Предлагаемый курс содержит недостаточно проработанные в базовом курсе школьной математики вопросы и своим содержанием сможет привлечь внимание учащихся 10 классов, которым интересна математика. .

Контрольная работа по алгебре по теме: «Многочлены. Уравнения и системы уравнений высших степеней. Теорема Безу. Повторение». 9 класс ( углубленный уровень).

В контрольной работе содержится подборка заданий углубленного уровня по теме «Многочлены. Теорема Безу. Деление с остатком. Повторение». Для сильных ребят в этой теме необходимо рассмотреть .

«Решение уравнений высших степеней». 9-й класс

Разделы: Математика

Класс: 9

Учебная:

  • Углубить знания учащихся по теме “ Решение уравнений высших степеней” и обобщить учебный материал.
  • Познакомить учащихся с приёмами решения уравнений высших степеней.
  • Научить учащихся применять теорию делимости при решения уравнений высших степеней.
  • Научить учащихся выполнять деление “уголком” многочлена на многочлен.
  • Развивать умения и навыки работы с уравнениями высших степеней.
  • Развивающая:

    1. Развитие внимания учащихся.
    2. Развитие умения добиваться результатов труда.
    3. Развитие интереса к изучению алгебры и навыков самостоятельной работы.

    Воспитывающая:

  • Воспитание чувства коллективизма.
  • Формирование чувства ответственности за результат работы.
  • Формирование у учащихся адекватной самооценки при выборе отметки за работу на уроке.
  • Оборудование: компьютер, проектор.

    1 этап работы. Организационный момент.

    2 этап работы. Мотивация и выход на постановку проблемы

    Уравнение одно из важнейших понятий математики. Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры.

    В школьном курсе изучения математики очень много внимания уделяется решению различного вида уравнений. До девятого класса мы умели решать только линейные и квадратные уравнения. Уравнения третьей, четвёртой и т.д. степеней называются уравнениями высших степеней. В девятом классе мы познакомились с двумя основными приёмами решения некоторых уравнений третьей и четвёртой степеней: разложение многочлена на множители и использование замены переменной.

    А можно ли решить уравнения более высоких степеней? На этот вопрос мы постараемся сегодня найти ответ.

    3 этап работы. Повторить ранее изученный материал. Ввести понятие уравнения высших степеней.

    1) Решение линейного уравнения.

    Линейным называется уравнение вида , где по определению. Такое уравнение имеет единственный корень .

    2) Решение квадратного уравнения.

    Квадратным называется уравнение вида , где . Количество корней и сами корни определяются дискриминантом уравнения . Для уравнение корней не имеет, для имеет один корень (два одинаковых корня)

    , для имеет два различных корня .

    Из рассмотренных линейных и квадратных уравнений видим, что количество корней уравнения не более его степени. В курсе высшей алгебры доказывается, что уравнение -й степени имеет не более n корней. Что касается самих корней, то тут ситуация намного сложнее. Для уравнений третьей и четвёртой степеней известны формулы для нахождения корней. Однако эти формулы очень сложны и громоздки и практического применения не имеют. Для уравнений пятой и более высоких степеней общих формул не существует и существовать не может (как было доказано в XIX в. Н. Абелем и Э. Галуа).

    Будем называть уравнения третьей, четвёртой и т.д. степеней уравнениями высших степеней. Некоторые уравнения высоких степеней удаётся решить с помощью двух основных приёмов: разложением многочлена на множители или с использованием замены переменной.

    3) Решение кубического уравнения.

    Решим кубическое уравнение

    Сгруппируем члены многочлена, стоящего в левой части уравнения, и разложим на множители. Получим:

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три линейных уравнения:

    Итак, данное кубическое уравнение имеет три корня: ; ;.

    4) Решение биквадратного уравнения.

    Очень распространены биквадратные уравнения, которые имеют вид (т.е. уравнения, квадратные относительно ). Для их решения вводят новую переменную .

    Решим биквадратное уравнение .

    Введём новую переменную и получим квадратное уравнение , корнями которого являются числа и 4.

    Вернёмся к старой переменной и получим два простейших квадратных уравнения:

    (корни и )

    (корни и )

    Итак, данное биквадратное уравнение имеет четыре корня:

    ; ;.

    Попробуем решить уравнение используя выше изложенные приёмы.

    4 этап работы. Привести некоторые утверждения о корнях многочлена вида , где многочлен n-й степени

    Приведём некоторые утверждения о корнях многочлена вида :

    1) Многочлен -й степени имеет не более корней (с учётом их кратностей). Например, многочлен третьей степени не может иметь четыре корня.

    2) Многочлен нечётной степени имеет хотя бы один корень. Например, многочлены первой, третьей, пятой и т.д. степени имеют хотя бы один корень. Многочлены чётной степени корней могут и не иметь.

    3) Если на концах отрезка значения многочлена имеют разные знаки (т.е. ,), то на интервале находится хотя бы один корень. Это утверждение широко используется для приближенного вычисления корней многочлена.

    4) Если число является корнем многочлена вида , то этот многочлен можно представить в виде произведения , где многочлен (-й степени. Другими словами, многочлена вида можно разделить без остатка на двучлен . Это позволяет уравнение -й степени сводить к уравнению (-й степени (понижать степень уравнения).

    5) Если уравнение со всеми целыми коэффициентами (причём свободный член ) имеет целый корень , то этот корень является делителем свободного члена . Такое утверждение позволяет подобрать целый корень многочлена (если он есть).

    5 этап работы. Показать как применяется теория делимости для решения уравнений высших степеней. Рассмотреть примеры решения уравнений высших степеней , в которых для разложения левой части на множители используется способ деления многочлена на многочлен “уголком”.

    Пример 1. Решим уравнение .

    Если это уравнение имеет целый корень, то он является делителем свободного члена (-1), т.е. равняется одному из чисел: . Проверка показывает, что корнем уравнения является число -1. Значит, многочлен можно представить в виде произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

    Таким образом, мы фактически разложили левую часть уравнения на множители:

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем два уравнения:

    Итак, данное уравнение имеет три корня:

    Пример 2. Решим уравнение .

    Если это уравнение имеет целый корень, то он является делителем свободного члена (9),т.е. равняется одному из чисел: ;. Проверим:

    Значит, многочлен можно представить в виде произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

    Таким образом, мы разложили левую часть уравнения на множители:

    Аналогичным образом поступим и с многочленом .

    Если это уравнение имеет целый корень, то он является делителем свободного члена (9), т.е. равняется одному из чисел: ;. Проверим:

    Значит, многочлен можно представить в виде

    произведения , т.е. многочлен можно без остатка разделить на двучлен . Выполним такое деление “уголком”:

    Таким образом, мы разложили левую часть исходного уравнения на множители:

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три уравнения:

    Итак, данное уравнение имеет четыре корня:

    6 этап работы. Закрепление изученного материала.

    Решите уравнения высших степеней, используя способ деления многочлена на многочлен “уголком”.

    7 этап работы. Вывод урока.

    Решить уравнения высших степеней можно следующим образом:

    • используя формулы для нахождения корней (если они известны);
    • используя замену переменной;
    • раскладывая многочлен в левой части уравнения на множители, используя способ деления многочлена на многочлен “уголком”.

    8 этап работы. Домашнее задание.

    Дома решить уравнения высших степеней, используя способ деления многочлена на многочлен “уголком” (раздать листы с заданиями).

    Самостоятельная работа по теме «Уравнения высших степеней»

    Самсостоятельная работа по теме «Уравнения высших степеней» составлена на два варианта. Можно применять на уроках в 9-11 классах

    Просмотр содержимого документа
    «Самостоятельная работа по теме «Уравнения высших степеней»»

    1 вариант Самостоятельная работа:

    Решение уравнений высших степеней

    6x 3 – x 2 -20x +12 = 0;

    (2x + ) 2 + 2x + — 12 = 0;

    x 4 – 5x 3 + 8x 2 -5x +1 =0;

    2 вариант Самостоятельная работа:

    Решение уравнений высших степеней

    x 3 – 6x 2 + 5x +12 = 0;

    (2x — ) 2 + 2x + — 4 = 0;

    2x 4 + 3x 3 — 3x 2 — 3x +2 =0;

    1 вариант Самостоятельная работа:

    Решение уравнений высших степеней

    6x 3 – x 2 -20x +12 = 0;

    (2x + ) 2 + 2x + — 12 = 0;

    x 4 – 5x 3 + 8x 2 -5x +1 =0;

    1 вариант Самостоятельная работа:

    Решение уравнений высших степеней

    6x 3 – x 2 -20x +12 = 0;

    (2x + ) 2 + 2x + — 12 = 0;

    x 4 – 5x 3 + 8x 2 -5x +1 =0;

    2 вариант Самостоятельная работа:

    Решение уравнений высших степеней

    x 3 – 6x 2 + 5x +12 = 0;

    (2x — ) 2 + 2x + — 4 = 0;

    2x 4 + 3x 3 — 3x 2 — 3x +2 =0;

    1 вариант Самостоятельная работа:

    Решение уравнений высших степеней

    6x 3 – x 2 -20x +12 = 0;

    (2x + ) 2 + 2x + — 12 = 0;

    x 4 – 5x 3 + 8x 2 -5x +1 =0;

    1 вариант Самостоятельная работа:

    Решение уравнений высших степеней

    6x 3 – x 2 -20x +12 = 0;

    (2x + ) 2 + 2x + — 12 = 0;

    x 4 – 5x 3 + 8x 2 -5x +1 =0;

    2 вариант Самостоятельная работа:

    Решение уравнений высших степеней

    x 3 – 6x 2 + 5x +12 = 0;

    (2x — ) 2 + 2x + — 4 = 0;

    2x 4 + 3x 3 — 3x 2 — 3x +2 =0;

    2 вариант Самостоятельная работа:

    Решение уравнений высших степеней

    x 3 – 6x 2 + 5x +12 = 0;

    (2x — ) 2 + 2x + — 4 = 0;

    2x 4 + 3x 3 — 3x 2 — 3x +2 =0;

    1 вариант Самостоятельная работа:

    Решение уравнений высших степеней

    6x 3 – x 2 -20x +12 = 0;

    (2x + ) 2 + 2x + — 12 = 0;

    x 4 – 5x 3 + 8x 2 -5x +1 =0;

    2 вариант Самостоятельная работа:

    Решение уравнений высших степеней

    x 3 – 6x 2 + 5x +12 = 0;

    (2x — ) 2 + 2x + — 4 = 0;

    2x 4 + 3x 3 — 3x 2 — 3x +2 =0;

    1 вариант Самостоятельная работа:

    Решение уравнений высших степеней

    6x 3 – x 2 -20x +12 = 0;

    (2x + ) 2 + 2x + — 12 = 0;


    источники:

    http://urok.1sept.ru/articles/657320

    http://multiurok.ru/files/samostoiatelnaia-rabota-po-teme-uravneniia-vysshik.html