Решение уравнений задания в егэ

Задания по теме «Простейшие уравнения»

Открытый банк заданий по теме простейшие уравнения. Задания B5 из ЕГЭ по математике (профильный уровень)

Задание №887

Условие

Найдите корень уравнения 5^<\log_<25>(10x-8)>=8.

Решение

Найдем ОДЗ: 10x-8>0.

10x-8=64, значит, условие 10x-8>0 выполняется.

Ответ

Задание №886

Условие

Найдите корни уравнения \cos\frac<\pi(x+5)><6>=0,5. В ответе напишите наибольший отрицательный корень.

Решение

а) \frac<\pi(x+5)><6>=\frac<\pi><3>+2\pi k, \frac<6>=\frac13+2k, x+5=2+12k, x=-3+12k.

Наибольший отрицательный корень данного вида x=-3.

б) \frac<\pi(x+5)><6>=-\frac<\pi><3>+2\pi k , \frac<6>=-\frac13+2k, x+5=-2+12k, x=-7+12k.

Наибольший отрицательный корень данного вида x=-7.

Значит, наибольший отрицательный корень уравнения x=-3.

Задание №12. Уравнения — профильный ЕГЭ по математике

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие промежутку

Упростим левую часть по формуле приведения.

Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Видим, что указанному отрезку принадлежат решения

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.

2. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

Степени равны, их основания равны. Значит, равны и показатели.

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку

Отметим на тригонометрическом круге отрезок и найденные серии решений.

Видим, что указанному отрезку принадлежат точки и из серии

Точки серии не входят в указанный отрезок.

А из серии в указанный отрезок входит точка

Ответ в пункте (б):

3. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Применим формулу косинуса двойного угла:

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси .

Ответ в пункте а)

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

5. а) Решите уравнение

б) Найдите корни, принадлежащие отрезку

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых

Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

Задание №7 ЕГЭ по математике базового уровня

Простейшие уравнения

В задании №7 базового уровня ЕГЭ по математике необходимо решить

Простейшие (Protozoa) — тип одноклеточных животных.

Разбор типовых вариантов заданий №7 ЕГЭ по математике базового уровня

Вариант 7МБ1

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Алгоритм выполнения
  1. Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
  2. Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
  3. Преобразовать левую часть.
  4. Преобразовать правую часть.
  5. Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + 3) 2 = x 2 + 2 · x · 3 + 3 2 = x 2 + 6x + 9

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(x – 9) 2 = x 2 – 2 · x · 9 + 9 2 = x 2 – 18x + 81

После преобразования выражение примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

x 2 + 6x + 9 = x 2 – 18x + 81

Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую. При переносе из одной части равенства в другую знак меняется на противоположный.

x 2 + 6x – x 2 + 18x = 81 – 9

Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x 2 и x.

x 2 + 6x – x 2 + 18x = (x 2 – x 2 ) + (6x +18x) = 0 + 24x = 24x

Выражение примет вид:

Преобразуем правую часть. 81 – 9 = 72

Выражение примет вид:

Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

Решение в общем виде:

Вариант 7МБ2

Алгоритм выполнения
  1. Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
  2. Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
  3. Преобразовать левую часть.
  4. Преобразовать правую часть.
  5. Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + 2) 2 = x 2 + 2 · x · 2 + 2 2 = x 2 + 4x + 4

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(x – 8) 2 = x 2 – 2 · x · 8 + 8 2 = x 2 – 16x + 64

После преобразования выражение примет вид:

x 2 + 4x + 4 = x 2 – 16x + 64

Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую. При переносе из одной части равенства в другую знак меняется на противоположный.

x 2 + 4x – x 2 + 16x = 64 – 4

Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x 2 и x.

x 2 + 4x – x 2 + 16x = (x 2 – x 2 ) + (4x +16x) = 0 + 20x = 20x

Выражение примет вид:

Преобразуем правую часть. 64 – 4 = 60

Выражение примет вид:

Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

Решение в общем виде:

Вариант 7МБ3

Алгоритм выполнения
  1. Перенести вычитаемое в правую сторону равенства с противоположным знаком.
  2. Преобразовать правую часть с учетом свойства: logax + logay = loga (x · y).
  3. Приравнять логарифмические выражения. Можно так поступить, так как основания логарифмов в левой и правой части одинаковы.
  4. Решить уравнение относительно x.
Решение:

Вариант 7МБ4

Найдите корень уравнения 3 x− 3 = 81.

Алгоритм выполнения
  1. Привести выражения в степенях к одинаковому основанию. В данном случае – это 3. Теперь необходимо вспомнить, какой степенью тройки является 81.
  2. Когда основания равны, можно приравнять значения степеней

Если вы забыли, то для этого необходимо делить 81 на 3 до тех пор, пока не получим 3. Чтобы получить три из 81, нам нужно поделить 81 на 3 три раза: при первом делении мы получим 27, при втором – 9, при третьем – три.

Значит, 81 это три в четвертой степени. Запишем это:

Решение:

Ответ: 7

Вариант 7МБ5

Найдите корень уравнения log2( x − 3) = 6 .

Алгоритм выполнения
  1. Логарифм по основанию два показывает нам число, в степень которого нам необходимо возвести основание, то есть двойку, чтобы получить число под логарифмом.
Решение:

Вариант 7МБ6

Найдите отрицательный корень уравнения x 2 − x − 6 = 0.

Алгоритм выполнения
  1. Вычислить дискриминант
  2. Найти корни
  3. Выбрать необходимый корень
Решение:

D = -(1) 2 − 4 • 1 • (-6) = 25

Так как нам необходим отрицательный корень – ответ -2

Вариант 7МБ7

Решите уравнение х 2 = –2х + 24.

Если уравнение имеет больше одного

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Алгоритм выполнения
  1. Переносим влево часть ур-ния, стоящую справа от знака «=». Получаем кв.уравнение стандартного вида.
  2. Поскольку уравнение является приведенным, используем для нахождения корней т.Виета.
  3. Записываем в качестве ответа большее из полученных 2 чисел.
Решение:

Поскольку требуется указать больший из корней, то ответом будет 4.

Вариант 7МБ8

Найдите корни уравнения 4 х–6 = 64.

Алгоритм выполнения
  1. Представляем 64 как степень с основанием 4, т.е. приводим выражения справа и слева к степеням с одинаковым основанием.
  2. Опускаем одинаковые основания и переходим к равенству показателей. Ур-ние стало простейшим линейным.
  3. Находим корень ур-ния.
Решение:

Вариант 7МБ9

Найдите корень уравнения log3 (2x – 5) = 2.

Алгоритм выполнения
  1. Преобразуем часть уравнения справа от знака «=», используя св-ва логарифмов logxx=1 и logxy n =nlogxy.
  2. Переходим от равенства логарифмов к равенству выражений, стоящих под их знаками.
  3. Решаем полученное линейное ур-ние.
Решение:

Вариант 7МБ10

Найдите корень уравнения

Алгоритм выполнения
  1. Преобразовываем обе части ур-ния: приводим их к степеням с основанием 3. Для этого используем св-во степеней (1/а) х =а –х .
  2. Поскольку основания степеней слева и справа в ур-нии теперь одинаковы, то можем их опустить и приравнять показатели.
  3. Решаем полученное линейное ур-ние.
Решение:

Вариант 7МБ11

Найдите корень уравнения (х – 8) 2 = (х – 2) 2 .

Алгоритм выполнения
  1. Раскрываем скобки слева и справа, используя ф-

Луб — это сложная проводящая ткань, по которой продукты фотосинтеза (органические вещества) транспортируются из листьев ко всем органам растения (к корневищам, плодам, семенам и т. д.).

Решение:

х 2 – 2 · х ·8 + 8 2 = х 2 – 2 · х · 2 + 2 2

Вариант 7МБ12

Найдите корень уравнения

Алгоритм выполнения
  1. Преобразовываем обе части ур-ния так, чтобы привести их к степеням с одинаковым основанием 7. Для выражения слева применяем св-во степеней (1/а) х =а –х .
  2. Применяем св-во показат.уравнений: если степени с одинаковыми основаниями равны, то равны и их показатели. Отсюда переходим к линейному ур-нию.
  3. Решаем его.
Решение:

Вариант 7МБ13

Решите уравнение х 2 – 25 = 0

Алгоритм выполнения
  1. Переносим 25 в правую часть ур-ния.
  2. Выражаем из ур-ния х путем извлечения корня из 25.
  3. Определяем корни, сравниваем их, определяем больший.
Решение:

Для ответа берем 5.

Вариант 7МБ14

Найдите корень уравнения

Алгоритм выполнения
  1. Применим св-во логарифмических равенств: если логарифмы с одинаковыми основания равны, то равны и их подлогарифменные выражения. В результате получаем равенство из выражений, стоящих под знаком логарифма.
  2. Решаем полученное линейное ур-ние.
Решение:

Вариант 7МБ15

Найдите корень уравнения

Алгоритм выполнения
  1. Приводим обе части ур-ния к степеням с основанием 2. При этом для преобразования выражения слева используем св-во степеней (1/а) х =а –х .
  2. Получив слева и справа степени с одинаковым основанием, опускаем это основание и приравниваем показатели этих степеней. Получаем линейное ур-ние.
  3. Решаем его.
Решение:

Вариант 7МБ16

Найдите корень уравнения


источники:

http://ege-study.ru/ru/ege/materialy/matematika/zadanie-12-profilnogo-ege-po-matematike-uravneniya/

http://spadilo.ru/zadanie-7-ege-po-matematike-bazovyj/