Решение уравнения arctg x a

Арктангенс и решение уравнения tg x=a (продолжение)

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы продолжим изучение арктангенса и решение уравнений вида tg x = a для любого а. В начале урока решим уравнение с табличным значением и проиллюстрируем решение на графике, а потом и на круге. Далее решим уравнение tgx = aв общем виде и выведем общую формулу ответа. Проиллюстрируем вычисления на графике и на круге и рассмотрим различные формы ответа. В конце урока решим несколько задач с иллюстрацией решений на графике и на круге.

Арктангенс и арккотангенс. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти арксинус и арккосинус от числа. Результат можно видеть как в градусах, так и в радианах. Теоретическую часть и численные примеры смотрите ниже.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Арктангенс и арккотангенс − теория, примеры и решения

Функция арктангенс и ее график

Функция тангенс определена в интервале [−∞;+∞] кроме точек , . и не является монотонной функцией (т.е. не является возрастающей или убывающей во всей области определения функции (Рис.1) (подробнее о функции тангенс смотрите на странице Тангенс и котангенс. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.

Однако, функцию тангенс можно разделить на интервалы, где она монотонна. Эти интервалы:

, , , и т.д.

По теореме об обратной функции, на каждом из указанных отрезков функция tg x имеет обратную функцию. Отметим, что это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию обозначают x=arctg y. Поменяв местами x и y, получим:

y=arctg x.(1)

Функция (1) − это функция, обратная к функции

.

График функции арктангенс можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.2).

Свойства функции арктангенс.

  1. Область определения функции: .
  2. Область значений функции: .
  3. Функция является нечетной: .
  4. Функция возрастает.
  5. Функция непрерывна.

Решим тригонометрическое уравнение

В интервале для уравнения (2) существует одно t, для которого tg t=a. Это решение

Следовательно в интервале уравнение (2) имеет один корень. Так как тангенс периодичная функция с основным периодом π, то все корни уравнения (2) отличаются на πn (n∈Z), т.е.

.(3)

Решение уравнения (2) представлен на Рис.3:

Так как tg t − это ординат точки пересечения прямой OMt1 c прямым x=1, то для любого a на линии тангенса есть только одна точка T(1; a). Прямая OTt пересекается с окружностью с радиусом 1 в двух точках: . Но только точка соответствует интервалу , которое соответствует решению .

Пример 1. Решить тригонометрическое уравнение:

.

Решение. Воспользуемся формулой (3):

,
.

Пример 2. Решить тригонометрическое уравнение:

.

Решение. Воспользуемся формулой (3):

.

Используя онлайн калькулятор получим:

.

Функция арккотангенс и ее график

Как известно, функция котангенс определена в интервале [−∞;+∞] кроме точек -2π, —π 0, π, 2π. и не является монотонной функцией (Рис.4) (подробнее о функции котангенс смотрите на странице Тангенс и котангенс. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.

Однако, функцию кокотангенс можно разделить на интервалы, где она монотонна. Эти интервалы:

По теореме об обратной функции, на каждом из указанных интервалов функция ctg x имеет обратную функцию. Это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию оброзначают x=arcctg y. Поменяв местами x и y, получим:

y=arcctg x.(4)

Функция (4) − это функция, обратная к функции

.

График функции арккотангенс можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.5).

Свойства функции арккотангенс.

  1. Область определения функции: .
  2. Область значений функции: .
  3. Функция не является ни четной ни нечетной (так как функция не симметрична ни относительно начала координит, ни относительно оси Y).
  4. Функция убывает.
  5. Функция непрерывна.

Решим тригонометрическое уравнение

В интервале (0; π) для уравнения (5) существует одно t, для которого сtg t=a. Это t=arcctg a. Следовательно в интервале (0; π) уравнение (5) имеет один корень. Так как котангенс периодичная функция с основным периодом π, то общее решение уравнения (5) имеет следующий вид:

(6)

Решения уравнения (5) можно представить на единичной окружности (Рис.6):

ctg t − это абсцис точки пересечения прямой с прямым y=1. Любому числу a на линии котангенс соответствует только одна точка . Прямая пересекется с единичной окружностью в двух точках . Но только точка соответствует интервалу (0; π), которое соответствует решению .

Пример 1. Решить тригонометрическое уравнение:

.

Решение. Воcпользуемся формулой (6):

.

Так как в интервале (0; π), то

.

Пример 2. Решить следующее тригонометрическое уравнение:

.

Решение. Используя формулу (6), имеем

.

С помощью онлайн калькулятора вычисляем . Тогда

Урок «Арктангенс и арккотангенс. Решение уравнений tgx = а, ctgx = a»

Краткое описание документа:

Ранее по программе учащиеся получили представление о решении тригонометрических уравнений, ознакомились с понятиями арккосинуса и арксинуса, примерами решений уравнений cos t = a и sin t = a. В этом видеоуроке рассмотрим решение уравнений tg x = a и ctg x = a.

В начале изучения данной темы рассмотрим уравнения tg x = 3 и tg x = – 3. Если уравнение tg x = 3 будем решать с помощью графика, то увидим, что пересечение графиков функций y = tg x и y = 3 имеет бесконечное множество решений, где x = x1 + πk. Значение x1 – это координата x точки пересечения графиков функций y = tg x и y = 3. Автор вводит понятие арктангенса: arctg 3 это число, tg которого равен 3, и это число принадлежит интервалу от –π/2 до π/2. Используя понятие арктангенса, решение уравнения tg x = 3 можно записать в виде x = arctg 3 + πk.

По аналогии решается уравнение tg x = – 3. По построенным графикам функций y = tg x и y = – 3 видно, что точки пересечения графиков, а следовательно, и решениями уравнений, будет x = x2 + πk. С помощью арктангенса решение можно записать как x = arctg (– 3) + πk. На следующем рисунке увидим, что arctg (– 3) = – arctg 3.

Общее определение арктангенса выглядит следующим образом: арктангенсом а называется такое число из промежутка от –π/2 до π/2, тангенс которого равен а. Тогда решением уравнения tg x = a является x = arctg a + πk.

Автор приводит пример 1. Найти решение выражения arctg.Введем обозначения: арктангенс числа равен x, тогда tg x будет равен данному числу, где x принадлежит отрезку от –π/2 до π/2. Как в примерах в предыдущих темах, воспользуемся таблицей значений. По этой таблице тангенсу данного числа соответствует значение x = π/3. Запишем решение уравнения арктангенс заданного числа равен π/3, π/3 принадлежит и интервалу от –π/2 до π/2.

Пример 2 – вычислить арктангенс отрицательного числа. Используя равенство arctg (– a) = – arctg a, введем значение x. Аналогично примеру 2 запишем значение x, которое принадлежит отрезку от –π/2 до π/2. По таблице значений найдем, что x = π/3, следовательно, -– tg x = – π/3. Ответом уравнения будет – π/3.

Рассмотрим пример 3. Решим уравнение tg x = 1. Запишем, что x = arctg 1 + πk. В таблице значению tg 1 соответствует значение x = π/4, следовательно, arctg 1 = π/4. Подставим это значение в исходную формулу x и запишем ответ x = π/4 + πk.

Пример 4: вычислить tg x = – 4,1. В данном случае x = arctg (– 4,1) + πk. Т.к. найти значение arctg в данном случае нет возможности, ответ будет выглядеть как x = arctg (– 4,1) + πk.


источники:

http://matworld.ru/trigonometry/arktangens-i-arkkotangens.php

http://urokimatematiki.ru/urok-arktangens-i-arkkotangens-reshenie-uravneniy-tg-a-ctg-a-856.html