Решение уравнения эйлера онлайн с решением

Уравнения Эйлера по математике

Леонард Эйлер швейцарский, немецкий и российский математик и механик, внёсший фундаментальный вклад в развитие этих наук, а также физики, астрономии и других. Эйлер — автор более чем 850 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближённым вычислениям, небесной механике, и математической физике. Он глубоко изучал медицину, химию, ботанику, воздухоплавание, теорию музыки, множество европейских и древних языков. Решение уравнений Эйлера является весьма нетривиальной задачей и требует определенных знаний. Уравнения данного рода имеют средний уровень сложности и изучаются в старших классах школы.

Уравнение Эйлера имеет следующий вид:

\[P_2, P_2, \cdots ,P_\] — постоянные числа.

Благодаря замене \[x = e^t\] данное уравнение преобразуется к уравнению с постоянными коэффициентами:

\[y ‘(x)= v ‘(t)dt/dx=v ‘(t) \cdot e^-t ; xy'(x) =v'(t) \]

Подставив эти значения, мы получим уравнение с постоянными коэффициентами относительно функции \[v(t).\]

Допустим, дано такое уравнение Эйлера:

Решение данного уравнения будем искать в виде \[y =x^k,\] поэтому:

Вставив эти значения производных получим:

Соответственно, если \[x \ne 0 k(k-1)+3k+3=0.\] Поскольку \[k = -1\] второй кратности, то\[ y = \frac<1>\] является решением уравнения Эйлера. Другое решение \[y =\frac <(ln x)>\]. В этом можно убедиться, поскольку \[\frac <1>\] и \[ \frac <(ln x)>\] линейно независимые, то:

Это и есть общее решение данного вида уравнения Эйлера.

Где можно решить уравнение Эйлера онлайн?

Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Euler method

This online calculator implements Euler’s method, which is a first order numerical method to solve first degree differential equations with a given initial value.

You can use this calculator to solve first degree differential equations with a given initial value, using Euler’s method.

To use this method, you should have a differential equation in the form

You enter the right side of the equation f(x,y) in the y’ field below.

You also need the initial value as

and the point for which you want to approximate the value.

The last parameter of the method – a step size – is literally a step along the tangent line to compute the next approximation of a function curve.

If you know the exact solution of a differential equation in the form y=f(x), you can enter it as well. In this case, the calculator also plots the solution along with the approximation on the graph, and computes the absolute error for each step of the approximation.

A method explanation can be found below the calculator.

Euler method

Euler method

So, let’s suppose we have the following

If we calculate

we will find the derivative y’ at the initial point.

For sufficiently small , we can approximate the next value of y as

And in the general case

We continue to calculate the next y values using this relation until we reach target x point.

This is the essence of Euler’s method. is the step size. The error on each step (local truncation error) is roughly proportional to the square of the step size, so the Euler method is more accurate if the step size is smaller. However, global truncation error is the cumulative effect of the local truncation errors and is proportional to the step size, and that’s why the Euler method is said to be a first order method.

More complicated methods can achieve a higher order (and more accuracy). One possibility is to use more function evaluations. This is illustrated by the Midpoint method


источники:

http://mathdf.com/dif/ru/

http://planetcalc.com/8393/