Решение уравнения гельмгольца в сферических координатах

Решение уравнения гельмгольца в сферических координатах

Настоящая книга является естественным дополнением пособия А. Г. Свешникова, А. Н. Боголюбова, В. В. Кравцова «Лекции по математической физике». Её основная цель — помочь студентам приобрести необходимые практические навыки исследования математических моделей физических явлений, являющихся краевыми или начально-краевыми задачами для линейных дифференциальных уравнений в частных производных второго порядка. С этой целью каждая глава пособия построена следующим образом. В начале каждого параграфа главы приводятся необходимые минимальные сведения теоретического характера, используемые для решения данного типа задач. Затем эти методы демонстрируются в работе, для чего даются примеры решения конкретных задач. В конце главы приводятся задачи с ответами для самостоятельного решения.

Содержание пособия полностью соответствует курсу «Методы математической физики», читаемому на физическом факультете МГУ. Пособие написано на основе более чем двадцатилетнего опыта преподавания на физическом факультете Московского университета. Оно рассчитано в первую очередь на студентов физических специальностей университетов, но будет полезно и студентам инженерных специальностей и лицам, занимающимся математической физикой и прикладной математикой.

Авторы выражают свою глубокую благодарность заведующему кафедрой Московского государственного института электронной профессору А. С. Поспелову, профессорам А. В. Ефимову, А. С. Ильинскому и С. Я. Секерж-Зеньковичу, взявшим на себя труд ознакомиться с рукописью и сделавшим ряд ценных замечаний.

Решение однородных волновых уравнений Гельмгольца. Плоские волны

Если в рассматриваемой области отсутствуют сторонние источники, то электромагнитное монохроматическое поле описывается однородными уравнениями для комплексных амплитуд:

Каждое из векторных уравнений этой системы эквивалентно трем однотипным скалярным уравнениям для координатных составляющих соответствующего вектора:

,

где – любая из составляющих или .

Предположим, что в среде отсутствуют потери, следовательно, нужно положить и .

Однородное уравнение Гельмгольца в декартовой системе координат (x,y,z) принимает вид

,

где – любая из составляющих или . Предположим, что поле не зависит от координат x и y ( ). Это справедливо при определении поля в области V, размеры которой малы по сравнению с расстоянием до источника. Тогда имеем обыкновенное дифференциальное уравнение

.

Его решение возьмем в форме

.

Точки над и поставлены, чтобы подчеркнуть, что это в общем случае, произвольные комплексные константы и . Чтобы найти w, возьмем ; это дает:

w(z,t) = Pcos(ωt – kz + ψ) + Q cos(ωt + kz + φ).

w(z,t) = Pcos(ωt – kz + ψ) .

Поверхность, на которой в данный момент времени мгновенное значение функции постоянно, принято называть поверхностью равных фаз(ПРФ). По виду этой поверхности классифицируются волны. Волны, у которых ПРФ – плоскость, называются плоскими.

ПРФ перемещается в пространстве со скоростью:

Таким образом имеем плоскую гармоническую волну, движущуюся со скоростью Vф вдоль оси Z; введенный параметр k называется волновым числом. Значения функции w(z,t) периодически повторяются. Пространственный период называется длиной волны λ. Очевидно, что

Поэтому следует, что k . λ =2 π, т.е.

, V = λ . f,

где f = ω/2π – частота процесса. Заметим, что в данном случае V называется фазовой скоростью. Гармонические волны у которых амплитуда не зависит от поперечных (по отношению к направлению распространения) координат (в рассматриваемом случае x и y) называются однородными

. Л Е К Ц И Я — 4Чтобы составить более наглядное представление о гармонической волне, положим сначала в w(z,t) t =0 и получим

w(z,0) = Pcos(– kz + ψ) = Pcos(kz – ψ),

т.е. функцию, характеризующую распределение величины w вдоль оси Z в начальный момент t = 0. Эта косинусоида (кривая 1 на рис. 5.1) представляет собой как бы «мгновенный снимок» процесса. Выберем следующий фиксированный момент t1 > 0 и для него запишем:

где l = ωt1/V = V . t1 – есть не что иное, как расстояние, пройденное волной за время t1. «Мгновенный снимок», соответствующий моменту t1, дает, таким образом, косинусоиду, сдвинутую по оси Z на расстояние l (кривая 2 на рис. 5.1).

Распространение гармонической волны – это движение косинусоидального распределения w вдоль прямой (оси Z) с постоянной скоростью (Рис.5.1.). Описываемый процесс называется бегущей волной.

Рассматривая случай P = 0 , получим также плоскую гармоническую волну, но распространяющуюся навстречу оси Z.

Таким образом, найденное решение уравнения выражает суперпозицию двух гармонических волн, распространяющихся со скоростью V в противоположенных направлениях.

Рассмотрим случай бегущих навстречу волн с одинаковыми амплитудами P = Q и начальными фазами ψ = φ . При этом из получаем:

w(z,t) = 2Pcoskz cos(ωt + ψ).

Описываемый процесс называется стоячей волной. Его отличительной особенностью является синфазность колебаний во всем пространстве. Фаза ωt + ψ зависит только от времени и постоянна для всех z; в зависимости от z косинусоидально изменяется амплитуда гармонических колебаний wm = 2Pcoskz*. Ряд «мгновенных снимков» процесса для разных моментов времени приведен на рис.5.2. Косинусоидальное распределение вдоль оси z не движется (в отличие от бегущей волны), а испытывает синфазные гармонические колебания; при этом расстояния между соседними нулями («узлами») и максимумами («пучностями») распределения равны λ/2.

В случае среды с потерями , где k’ и k» – действительные числа. Соответственно решение уравнения (5.1.3) имеет вид:

,

.

Чтобы найти w, возьмем ; это дает:

w(z,t) = Pe – k » z cos(ωt – k’z + ψ) + Qe k » z cos(ωt + k’z + φ).

Гармоническая плоская волна у которой амплитуда зависит только от продольной по отношению к направлению распространения координаты является также однородной:

и, в частности, полагая коэффициент Q = 0, получаем гармоническую однородную затухающую волну

w(z,t) = Pe – k » z cos(ωt – k’z + ψ), (k»>0)

с амплитудой, уменьшающейся экспоненциально по мере ее распространения; параметр k» – называется коэффициентом затухания. Два «мгновенных снимка» затухающей волны для моментов t = 0 и t1 > 0 показаны на рис. 5.3.

Сферическая и цилиндрическая волны выражаются частными решениями однородного уравнения в сферических и цилиндрических координатах при отсутствии зависимости от угловых координат φ и θ в сферической и от φ и z в цилиндрической системах.

Дата добавления: 2016-03-27 ; просмотров: 2064 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ТЕМА: Уравнения эллиптического типа

ТИТУЛЬНЫЙ ЛИСТ

1 Теоретические обоснования уравнений эллиптического типа………………. 4

1.1. Задачи приводящие к уравнению Лапласа………………. 5

1.2. Уравнение Шредингера и его стационарный аналог. 9

1.3. Уравнение Гельмгольца……………………………………………. ……10

2 Примеры решения задач на уравнения эллиптического типа……………………12

Список использованных источников……………………………………………. …16

В курсовой работе будут рассмотрены уравнения эллиптического типа.

Актуальность исследования заключается в том, что благодаря данному типу уравнений можно описать стационарные процессы, проходящие в различных физических полях. Например, с помощью уравнения Пуассона можно описать электростатическое поле, поле давления [1].

Исследование затронет следующие проблемы: применение уравнений эллиптического типа на практике и способы их решения.

Целью исследования является: изучение вопроса, касающегося применения уравнений эллиптического типа на практике.

Основными задачами, поставленными для достижения цели можно считать:

— ознакомиться с положениями, характеризующими уравнения эллиптического типа;

— выявить основные уравнения, относящиеся к данному типу;

— освоить навык решения задач, используя данные уравнения;

— показать специфику проблем, которые могут возникнуть на этапах решения.

Объектом исследования заданной темы являются дифференциальные уравнения в частных производных.

Предметом исследования выступают уравнения эллиптического типа.

Теоретической и методологической основой исследования послужили труды отечественных и зарубежных деятелей, методические пособия по дисциплине «методы математической физики».

1. ТЕОРЕТИЧЕСКИЕ ОБОСНОВАНИЯ УРАВНЕНИЙ ЭЛЛИПТИЧЕСКОГО ТИПА

Помимо физических явлений, развивающихся в пространстве и во времени, существует множество процессов, которые не изменяются с течением времени. Эти процессы называются стационарными. При исследовании данных процессов, различной физической природы (колебания, теплопроводность, диффузия и др.) обычно приходят к уравнениям эллиптического типа. Примерами могут выступать:

1. Уравнения Лапласа и Пуассона, описывают различные стационарные физические поля.

2. Стационарный аналог уравнения Шредингера, когда предполагается гармоническая зависимость от времени.

3. Уравнение Гельмгольца.

4. Уравнения, получаемые из уравнения Максвелла, если предполагается, что электромагнитное поле не изменяется с течением времени [1].

Наиболее распространенным уравнением этого типа является уравнение Лапласа

.

Этим уравнением характеризуется гравитационный и электростатический потенциалы в точках свободного пространства, оно описывает потенциал скорости безвихревого потока несжимаемой жидкости, и оно же справедливо для температуры однородной изотропной среды при установившемся движении тепла.

Функция называется гармонической в области , если она непрерывна в этой области вместе со своими производными до 2-го порядка и удовлетворяют уравнению Лапласа.

При изучении свойств гармонических функций были разработанные различные математические методы, оказавшиеся плодотворными и в применении к уравнениями гиперболического и параболического типов [1].

1.1. ЗАДАЧИ ПРИВОДЯЩИЕ К УРАВНЕНИЮ ЛАПЛАСА

1. Стационарное тепловое поле. Постановка краевых задач.

Рассматривается стационарное тепловое поле. Температура нестационарного теплового может быть представлена дифференциальным уравнением теплопроводности

Если процесс стационарен, то устанавливается распределение температуры , не меняющееся с течением времени и, следовательно, удовлетворяющее уравнению Лапласа

(1)

При наличии источников тепла получается уравнение

(2)

где – плотность тепловых источников, а – коэффициент теплопроводности. Неоднородное уравнение Лапласа (2) часто называют уравнением Пуассона.

Рассматривается некоторый объем , ограниченный поверхностью . Задача о стационарном распределении температуры внутри тела формулируется следующим образом:

Найти функцию , удовлетворяющую внутри Т уравнению

,(3)

и граничному условию, которое может быть взято в одном из следующих видов:

I. на (первая краевая задача);

II. на (вторая краевая задача);

III. на (третья краевая задача).

где , , , — заданные функции, – производная по внешней нормали к поверхности

Первую краевую задачу называют для уравнений Лапласа часто называют задачей Дирехле, а вторую задачу – задачей Неймана.

Если ищется решение в области , внутренней (или внешней) по отношению к поверхности , то соответствующую задачу называют внутренней (или внешней) краевой задачей [3].

2. Потенциальное течение жидкости. Потенциал стационарного тока и электростатического поля.

В качестве второго примера будет рассмотрено потенциальное течение жидкости без источников. Пусть внутри некоторого объема с границей имеет место стационарное течение несжимаемой жидкости (плотность ), характеризуемое скоростью . Если течение жидкости не вихревое, то скорость является потенциальным вектором, т.е

(4)

где – скалярная функция, называемая потенциалом скорости. Если отсутствуют источники, то

.(5)

При подстановке сюда выражения (3) для υ, выходит:

,

,(6)

то есть потенциал скорости удовлетворяет уравнению Лапласа.

Пусть в однородной проводящей среде имеется стационарный ток с объемной плотностью . Если в среде нет объемных источников тока, то

.(7)

Электрическое поле определяется через плотность тока из дифференциального закона Ома

(8)

где – проводимость среды.

Поскольку процесс стационарный, то электрическое поле является безвихревым или потенциальным, т.е. существует такая скалярная функция для которой

).(9)

Отсюда на основании формул (6) и (7) заключается, что

,(10)

т.е. потенциал электрического поля стационарного тока удовлетворяет уравнению Лапласа.

Рассматривается электрическое поле стационарных зарядов. Из стационарности процесса следует, что

,(11)

т.е. поле является потенциальным и

.

Пусть – объемная плотность заряда, имеющихся в среде, характеризуемой диэлектрической постоянной .

Исходя из основного закона электродинамики

(12)

где – некоторый объем, – поверхность, его ограничивающая, где – сумма всех зарядов внутри , и пользуясь теоремой Отроградского

(13)

.

При подстановке сюда выражение (8) для , выходит:

,(14)

т.е. электростатический потенциал удовлетворяет уравнению Пуассона. Если объемных зарядов нет , то потенциал должен удовлетворять уравнению Лапласа

Нами был рассмотрен ряд процессов. Основные краевые задачи для которых относятся к трем типам, приведенным выше [1].

1.2. УРАВНЕНИЕ ШРЕДИНГЕРА И ЕГО СТАЦИОНАРНЫЙ АНАЛОГ

В квантовой механике состояние частицы описывается волновой функцией , квадрат модуля которой имеет смысл плотности вероятности найти частицу в окрестности данной точки в момент времени [2]. Волновая функция удовлетворяет уравнению Шредингера

где — постоянная Планка. Оператор Гамильтона для движения частицы в поле имеет вид

Уравнение Шредингера является уравнением в частных производных второго порядка по координатам, но первого порядка по времени. В отличие от волнового уравнения, чтобы выделить частное решение из общего, надо задавать при одно начальное условие, а не два.

Если искать решение в виде стационарных состояний , имеющих определенную энергию , то время можно исключить и получить стационарное уравнение Шредингера

(15)

Требуется найти не только решение , но и такие значения энергии , при которых эти решения удовлетворяют граничным условиям. Такая постановка называется спектральной задачей [3].

1.3 УРАВНЕНИЕ ГЕЛЬМГОЛЬЦА

Эллиптическое дифференциальное уравнение в частных производных, получаемое из уравнение Максвелла, если предполагается, что электромагнитное поле либо не меняется с течением времени, либо меняется по гармоническому закону. Может быть представлено как

где – это оператор Лапласа, а неизвестная функция определена в (на практике уравнение Гельмгольца применяется для ).

В уравнение Гельмгольца не входят операторы дифференцирования по времени, следовательно, сведение исходной задачи в частных производных к уравнению Гельмгольца может упростить её решение. Для примера рассматривается волновое уравнение:

(16)

Пусть функции и допускают разделение переменных: , и пусть . Нужно заметить, что в пространстве Фурье – преобразований дифференцирование по времени соответствует умножению на множитель . Таким образом, уравнение приводится к виду:

(17)

где = — это квадрат модуля волнового вектора.

Решение уравнения Гельмгольца зависит от вида граничных условий. В двумерном случае уравнение Гельмгольца применяется для решения задачи о колеблющейся мембране, тогда естественным образом задаются однородные граничные условия, что физически соответствует закреплению мембраны на границе. В таком случае решение будет зависеть от формы мембраны. Так, для круглой мембраны радиуса в полярных координатах уравнение принимает вид:

(18)

Метод разделения переменных позволяет перейти к задаче на собственные значения для части решения, зависящей только от :

(19)
(20)

а функция, зависящая только от радиуса, будет удовлетворять уравнению:

(21)

Фундаментальными решениями этих уравнений являются, соответственно, функции , где i-корень функции Бесселя λ-го порядка [4].

2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ НА УРАВНЕНИЯ ЭЛЛИПТИЧЕСКОГО ТИПА

В отличие от смешанных задач, для эллиптических уравнений ставится только краевая задача

где – внешняя нормаль к границе области .

При этом, если , задача называется задачей Дирихле, если , задачей Неймана, если то задача называется смешанной.

Задачи буду решаться в полярных или сферических координатах. Заданные краевые условия произвольные, неоднородные. Однородные краевые условия для нахождения собственных функций возникают из-за того, что области имеют специальный вид, а потому решение должно иметь период , а в случае прибавляются условия (уравнение Лапласа в новых координатах при этом имеет особенность). [5].

Предлагаю рассмотреть метод нахождения решения уравнения Лапласа в круге, то есть метод нахождения функции , удовлетворяющий уравнению Лапласа внутри круга радиусом c центром в полюсе полярной системы координат и граничному условию на окружности

где – заданная функция, непрерывная на окружности.

Задача № 1. Решить краевую задачу для уравнения в круге , если на границе круга φ.

Решение: Уравнение Лапласа в полярных координатах имеет вид

(22)

1. Частное решение уравнения в соответствии с методом Фурье ищется в виде

причем и периодическая с периодом

При подстановке в уравнение (22) и разделяя переменные, выходит

Поэтому функции и являются решениями связанных задач:

a)

b)

2. Решается задача

Общее решение уравнения имеет вид

(23)

где и – константы.

Это решение периодично при и имеет период при

Если

Если

3. Решается задача

Если Общее решение этого уравнения

Так как

Если ,

Общее решение этого уравнения

Так как

4. Вспомогательные решения имеют вид:

5. Тогда решение исходной задачи ищется в виде

6. При использовании граничного условия sin3φ,

получается sin3φ. Отсюда

В результате

Ответ:

Задача № 2. Решить краевую задачу

Решение: Проводятся преобразования, аналогичные предыдущей задачи до момента нахождения коэффициентов .

Нужно представить граничное условие в виде

Следовательно,

Далее предлагаю рассмотреть примеры решения краевых задач уравнения Гельмгольца.

Задача № 3. Решить краевую задачу для уравнения Гельмгольца в круге

(здесь , где – собственное значение однородной задачи Дирехле для уравнения ).

Решение: Используя метод разделения переменных (метод Фурье). Полагая, и подставляя предполагаемую форму решения в Уравнении Гельмгольца, получается

где – постоянная разделения.

Собственные значения и собственные функции определяются как решения данной задачи:

Выходит

то для определения получается уравнение

(24)

Обозначив , переписывается уравнение (24) в виде

Это уравнение Бесселя порядка . Его общее решение есть

где – функция Бесселя первого рода порядка – функция Бесселя второго рода порядка – произвольные постоянные.

Значит, решение уравнения (1) имеет вид

Поскольку и имеется дело с ограниченными решениями, то полагаем Таким образом, . Решение нашей задачи представляется рядом

(25)

Постоянные находятся из граничного условия. Полагая в (25) , получаем

В частности, при выходит

и в этом случае решение имеет вид

В проделанной нами работе, мы акцентировали внимание на такой теме как «Уравнения эллиптического типа». В ходе нашего исследования мы сумели выполнить поставленные перед нами задачи, что повлекло за собой достижение цели работы. Изучив теоретические материалы, мы разобрались с основными уравнениями, научились выводить их и применять в решениях задач. Были обозначены проблемы и пути их решения. В качестве примера выступили три задачи, требующие решение эллиптического уравнения.

Материалом данного исследования выступали труды советских и российских деятелей, содержащие в себе подробную информацию, касающуюся нашей проблемы.

В ходе выполнения данной работы появилась возможность оценить важность заданной темы в современной науке, определить основные задачи, которые можно решать с помощью уравнений эллиптического типа.

Подводя итог, хочется отметить, что изучение данного вопроса способствовала возникновению большого интереса, что позволило с энтузиазмом продолжать с ознакомлением трудов знаменитых авторов для дальнейшего анализа и использования в работе.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1.А.Н. Тихонов, А.А. Самарский, Уравнения математической физики М., издательство «наука», 1977. – 735 с.

2. Л.Д. Ландау, Е. М. Лифшиц, Квантовая механика,
М., Изд. 4е, «Наука», 1989. – 767 с.

3. Д.А. Шапиро, Конспект лекций по методам математической физики ч.1, кафедра теоретической физики НГУ, 2004. – 123 с.

4. В. С. Владимиров, В. В. Жаринов, Уравнения математической физики. — М.: «Физматлит», 2004. – 400 с.

5. С.И. Колесникова, Методы решения основных задач уравнений математической физики, М., МФТИ, 2015. – 80 с.


источники:

http://helpiks.org/7-57238.html

http://poisk-ru.ru/s18178t18.html