Решение уравнения по моделированию систем

Создание математической модели и решение задач с помощью систем уравнений

п.1. Алгоритм решения задач с помощью систем уравнений

Например:
Найдите два положительных числа, если известно, что сумма квадратов этих чисел равна 185, а разность квадратов равна 57.

Шаг 1
«От смысла к буквам»:
Пусть x > 0 и y > 0 – задуманные числа.

Шаг 4
«От букв к смыслу»:
Выбираем положительные корни $$ \mathrm $$ Задуманы числа 11 и 8.

п.2. Примеры

Пример 1. Диагональ прямоугольника равна 10 см. Если меньшую сторону прямоугольника увеличить на 2 см, а большую уменьшить на 2 см, то диагональ не изменится. Найдите стороны прямоугольника.

Пусть a и b – стороны прямоугольника, a > b. Диагональ через стороны выражается по теореме Пифагора. По условию получаем: $$ \left\< \begin < l >\mathrm & \\ \mathrm <(a-2)^2+(b+2)^2=10^2>& \end\right. $$ Найдём линейную зависимость между a и b из уравнения: \begin \mathrm\\ \mathrm\\ \mathrm <4a-4b=8\Rightarrow a-b=2\Rightarrow a=b+2>\end Подставим a в верхнее уравнение системы: \( \mathrm <(b+2)^2+b^2=100>\) \begin \mathrm\\ \mathrm<2b^2+4b-96=0\Rightarrow b^2+2b-48=0\Rightarrow (b+8)(b-6)=0>\\ \mathrm \end Выбираем положительный корень: b = 6
Тогда a = b + 2 = 8
Ответ: 8 см и 6 см.

Пример 2. (задача Диофанта, III в.) Отношение двух чисел равно 3, а отношение суммы квадратов этих чисел к их сумме равно 5. Найдите эти числа.

Пусть x и y – искомые числа. По условию: $$ \left\< \begin < l >\mathrm<\frac=3> & \\ \mathrm<\frac=5> & \end\right.\Rightarrow \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. $$ Подставляем верхнее уравнение в нижнее и решаем: \begin \mathrm<(3y)^2+y^2=5(3y+y)\Rightarrow 9y^2+y^2=20y\Rightarrow 10y^2-20y=0\Rightarrow>\\ \mathrm <\Rightarrow 10y(y-2)=0\Rightarrow>\left[\begin < l >\mathrm & \\ \mathrm & \end\right. \end Т.к. y в первом уравнении системы стоит в знаменателе, он не может быть равен 0. Получаем: \begin \left\<\begin < l >\mathrm & \\ \mathrm & \end\right. \end Ответ: 6 и 2.

Пример 3. Двое рабочих могут выполнить работу за 12 дней. Если сначала один из них сделает половину всей работы, а потом остальное сделает другой, то им понадобится 25 дней. За сколько дней каждый рабочий может выполнить задание самостоятельно?

Пример 4. Бригада выполнила работу за 20 дней. Если бы в бригаде было на 4 человека больше, а рабочий день – на 1 ч дольше, то работа была бы выполнена за 10 дней. Если бы в бригаде было на 1 человека меньше, а рабочий день – на 1 ч короче, то работа была бы выполнена за 30 дней. Сколько человек было в бригаде, и сколько часов в день они работали?

Моделирование динамических систем: решение нелинейных уравнений

Конечной целью математического моделирования в любой области знаний является получение количественных характеристик исследуемого объекта. Некоторые параметры пушки, стрельбу из которой мы моделировали в прошлый раз, были заданы в условии задачи: начальная скорость снаряда, его калибр и материал, из которого он изготовлен. Угол наклона ствола можно отнести к варьируемым параметрам: любое серьезное орудие допускает наводку, в том числе и в вертикальной плоскости.

На выходе мы получили траекторию полета снаряда, что дает нам ориентировочные представления о характеристиках орудия: при заданных параметрах мы получили дальность стрельбы чуть более 2,5 км и высоту подъема снаряда чуть выше 800 метров. Точнее мы сказать не можем, вернее можем, если с карандашиком по сетке определим координаты нужных точек на графике. Но это, как известно, не наш метод. Хорошо бы получить эти данные с точностью, обеспечиваемой используемыми нами инструментами и без ручного труда. Вот об этом мы сегодня и поговорим.

1. Постановка задачи

Итак, построенная в прошлый раз математическая модель позволяет нам, для любого момента времени, определить координаты и скорость снаряда. По сути мы получили функции, которые позволяют вычислить следующие параметры траектории:

как функции времени. Высота полета снаряда это y(t). Если мы определим в какой момент времени высота становится равна нулю, то есть решим уравнение

относительно времени, то мы найдем момент времени в который снаряд упал на землю. Координата и будет дальность полета снаряда.

Как найти максимальную высоту подъема снаряда? Из графика траектории видно, что по мере подъема снаряда его траектория становится всё более и более пологой, пока в экстремальной точке скорость на мгновение становится горизонтальной и дальше снаряд движется вниз.

Говоря языком математики, необходимо найти точку экстремума функции . А что надо для этого сделать? Приравнять к нулю её производную! В данном случае производную по времени, то есть решить уравнение

ведь производная от вертикальной координаты по времени есть вертикальная проекция скорости. Корень этого уравнения, есть момент времени, когда снаряд достигнет максимальной высоты. Соответственно, интересующая нас высота

Просто? Более чем.

2. Уравнение, которого нет

И вот тут котенка Гава, как известно, ждут неприятности. Начнем с того, что даже если уравнение задано в виде формулы (аналитически) не всегда удается найти его решение. Вот например

Как вам? Простенько, но попробуйте найти икс, используя всё то, чему вас учили в школе. То-то же…

Введем замену , тогда
\begin
&u \, e^ <2 — u>= 1 \\
&u \, e^ <-u>= e^ <-2>\\
&-u \, e^ <-u>= -e^ <-2>
\end
Пусть теперь , тогда

Теперь делаем финт ушами. Математики прошлого хорошо поработали за нас. Если задана функция вида

то обратная ей функция, называется W-функцией Ламберта.

Не в даваясь в теорию ФКП, в которой я мало смыслю, скажу, что число попадает в интервал в котором функция Ламберта многозначна, значит корня будет два

откуда, раскручивая назад все замены получаем ответ

Приближенно этот ужас равен

Решение такого уравнения придется искать численно, тем более что очевидно его графическое решение

В случае с моделью пушки всё несколько коварнее — наше уравнение задано даже не формулой. Оно задано, грубо говоря, таблицей значений фазовых координат, полученных для вполне конкретных параметров выстрела. У нас нет уравнения!

Ну так нам никто не мешает, чёрт возьми, это уравнение построить. Но, прежде чем начать писать скрипты, хочу извинится перед читателем, что ввёл его в заблуждение. В одном файле скрипта Octave можно размещать несколько функций, и имя файле на обязательно должно совпадать с именем функции. Достаточно, чтобы скрипт не начинался с определения функции.

Создадим новый скрипт в том же каталоге, где расположены файлы ballistics.m, f.m и f_air.m. Назовем его, например cannon.m. Для начала зададимся параметрами снаряда, начальной скоростью и направлением выстрела

А теперь напишем функцию, которая будет вычислять значения фазовых координат для произвольного момента времени

Обратите внимание, теперь в качестве моментов времени, передаваемых функции решения уравнения мы берем всего два значения: начальный момент времени (t = 0) и интересующий нас момент времени. Соответственно, переменная solv будет содержать два вектора фазовых координат: начальный и тот который нам нужен. Собираем все компоненты конечной точки фазовой траектории в вектор Y и возвращаем его значение из функции.

Теперь нам ничего не стоит определить зависимость высоты полета снаряда от времени

протестируем полученную функцию

При запуске скрипта на исполнение мы увидим в командном окне следующий вывод

Отлично, функция работает! Аналогично определим и функцию вычисления горизонтальной дальности

Видно, что для вычисления высоты и дальности мы каждый раз интегрируем уравнения движения, от начального до интересующего нас момента времени. Таким образом мы получили зависимость, не выражаемую конкретной формулой. Это довольно круто.

3. Принципы численного решения нелинейных уравнений

Методы численного решения нелинейных и трансцендентных уравнений заточены под решение уравнений вида

К такой форме легко привести любое уравнение. Например

где . Корни этого, эквивалентного уравнения, равны корням исходного. Если мы построим график функции f(x), то увидим такую картинку


корни уравнения это значения аргумента в тех точках, где график пересекает ось x.

Все методы численного решения таких уравнений включают в себя два этапа:

  1. Поиск начального приближения корня
  2. Уточнение корня с заданной погрешностью

Под начальным приближением понимают значение аргумента f(x), максимально близкое к корню, либо достаточно близкое, чтобы обеспечить сходимость метода за разумное количество итераций.

Простейшим методом является метод простых итераций. Для применения этого метода уравнение преобразуют к виду

и выполняю расчеты по рекуррентной формуле

В нашем примере

Посмотрим на график. У уравнения два корня. Найдем крайний левый корень, выбрав в качестве начального приближения

Ага, видно, что начиная с шестой итерации четвертый знак получающегося числа остается неизменным. Значит мы нашли корень уравнения с погрешностью менее 10 -4 на шестой итерации.

Все бы хорошо, но метод простых итераций не всегда сходится. Попробуйте найти второй корень этого уравнения, задавшись любым, сколь угодно близким начальным приближением — у вас ничего не выйдет: каждое новое значение будет уходить от корня всё дальше и дальше. Сходимости метода можно добиться, существуют способы, но на практике это существенно осложняет нам жизнь. Поэтому для нахождения второго корня применим другой метод. Разложим исследуемую функцию в ряд Тейлора, в окрестности начального приближения

Ограничимся членами первого порядка малости, заменив саму функцию f(x) касательной к её графику в точке x0

и приравняв полученное выражение к нулю, решим его относительно x

Получаем итерационную формулу

В нашем примере

В качестве начального приближения берем и пытаемся выполнять итерации

Как видно, этот метод сошелся за четыре итерации с точностью до четырех знаков. Этот метод называют методом Ньютона. Его достоинством является быстрая сходимость. Среди недостатков: высокая чувствительность к точности начального приближения и необходимость вычислять производную левой части уравнения. В случае, когда для уравнения нет аналитического выражения, приходится прибегать к мерзкой операции численного дифференцирования, что не всегда удобно и возможно.

Эти примеры я привел, чтобы объяснить общий принцип. Кроме этих двух методов существует ещё масса методов, например:

  • Метод бисекции — отличается гарантированной сходимостью, однако с довольно низкой скоростью
  • Метод хорд — не требует вычисления производной функции, обладает неплохой скоростью сходимости

Все перечисленные методы требуют предварительной подготовки, в виде поиска начального приближения или интервала изоляции корня — интервала изменения аргумента f(x), на границах которого функция меняет знак. В этом случае можно с уверенность сказать (при условии непрерывности функции!) что внутри интервала изоляции есть хотя бы один корень.

4. Определяем параметры траектории пушечного ядра

Итак, найдем момент времени, когда снаряд упадет на землю. Прежде всего, определим интервал изоляции корня

Делаем это исходя из физического смысла задачи — после сразу выстрела высота полета снаряда неотрицательна. Перебираем все моменты времени, начиная от нуля, до тех пор, пока высота не станет отрицательна. Перебираем с достаточно крупным шагом (1 секунда) чтобы процедура не была слишком длительной, ведь на каждом шаге мы заново интегрируем дифференциальные уравнения движения, что весьма накладно сточки зрения вычислительных затрат. Как только высота станет отрицательной, заканчиваем перебор. Корень уравнения h(t) = 0 находится где-то внутри интервала [a, b]. Начальное приближение берем в середине этого интервала

Теперь отдаем уравнение на съедение процедуре решения нелинейных уравнений Octave

Функция fsolve() на вход принимает функцию, описывающую левую часть уравнения f(x) = 0 и значение начального приближения. Возвращает значение корня, вычисленное с заданной точностью. С какой точностью? Пока не будем задаваться этим вопросом и воспользуемся настройками по-умолчанию, на данном этапе они нас устраивают.

Получив значение момента времени падения, вычисляем дистанцию от позиции стрельбы

Аналогичным образом находим момент времени когда обнуляется вертикальная проекция скорости и вычисляем высоту полета снаряда в этот момент

В командном окне можно увидеть результаты работы программы

а также посмотреть, с какой точностью были решены уравнения

Для наших учебных целей точность вполне приемлема.

Компьютерное моделирование и решение линейных и нелинейных многомерных систем

При моделировании экономических задач, таких как задачи управления и планирования производства, определения оптимального размещения оборудования, оптимального плана производства, оптимального плана перевозок грузов ( транспортная задача), распределения кадров и др., может быть положена гипотеза линейного представления реального мира.

Математические модели таких задач представляются линейными уравнениями. Если задача многомерна, то ее математическая модель представляется системой линейных уравнений .

Линейные математические модели также используются в нелинейных системах при условии, если эта нелинейная система условно линеаризирована.

В общем виде система линейных уравнений имеет вид:

aij — коэффициенты при неизвестных системы,

bi — свободные члены ,

xj — неизвестные системы,

— номер строки,

— номер столбца,

n — порядок системы.

В матричной форме система линейных уравнений имеет вид:

Численные методы решения систем линейных уравнений (СЛУ) можно разделить на две группы:

  1. точные или прямые методы,
  2. приближенные методы.

Приближенные методы реализуют на ЭВМ нахождение корней с заданной точностью и являются итерационными методами.

Точные методы позволяют получить решение системы за конечное число итераций. К точным методам относятся:

  • правило Крамера,
  • метод Гаусса ,
  • метод прогонки .

Решение систем линейных уравнений методом Гаусса

Метод Гаусса является точным методом. Он позволяет получить решение системы за конечное число арифметических действий. В основе метода лежит идея последовательного исключения неизвестных. Метод состоит из двух этапов. На первом этапе (прямой ход) система при помощи последовательного исключения неизвестных приводится к треугольному виду. На втором этапе (обратный ход) из системы треугольного вида последовательно, в обратном порядке, начиная c n-го уравнения, находятся неизвестные системы.

В качестве примера возьмем систему 4 порядка.

( 9.1)

Прямой ход. На первом шаге прямого хода (к=1) находим x1 из первого уравнения системы (9.1).

— ведущий элемент первой строки.

Если , то

( 9.2)
( 9.3)

Подставляя (9.3) в (9.2), получим

( 9.4)

Подставляем (9.4) во 2, 3 и 4 уравнение системы (9.1), получим:

Обозначив коэффициенты при неизвестных полученной системы через , а свободные члены через перепишем полученную систему:

( 9.5)

Таким образом, в результате выполнения первого шага прямого хода исходная система (9.1) n-го порядка преобразована к совокупности уравнения (9.4) и системы линейных уравнений (9.5), порядок которой равен n-1 .

На втором шаге прямого хода (к=2) из первого уравнения системы (9.5) находим x2 .

-ведущий элемент первой строки системы (9.5).

Если , то из первого уравнения системы (9.5) имеем:

( 9.6)

Подставив выражение (9.6) во второе и третье уравнения системы (9.5), получим новую систему линейных уравнений , порядок которой равен n-2 .

( 9.7)

Таким образом, в результате выполнения второго шага прямого хода исходная система (9.1) преобразована к совокупности уравнений (9.4), (9.6) и системы линейных уравнений (9.7),порядок которой равен n-2 .


источники:

http://habr.com/ru/post/349426/

http://intuit.ru/studies/courses/2260/156/lecture/27249