Решение уравнения с параметром онлайн с решением

Решение уравнений онлайн

В общем виде, уравнение относительно некоторой переменной может быть записано следующим образом:

Решить, приведенное выше уравнение, означает найти все значения переменной при которых выражение обращается в верное тождество.

Графически, корни уравнения представляют собой абсциссы точек пересечения графика функции с осью :

Таким образом, из приведенного на рисунке графика некоторой функции , мы можем сразу сказать, что значения являются корнями уравнения .

В зависимости от конкретного вида функции существует бесконечное множество различных уравнений (линейные, квадратные, кубические, тригонометрические, уравнения с корнями, степенями и т.д.).

Наш онлайн калькулятор построен на основе системы Wolfram Alpha LLC и способен решить очень много различных типов уравнений с описанием подробного решения.

Квадратные уравнения с параметром

Уравнение называется квадратным, если имеет вид \(ax^2+bx+c=0,\) где \(a,b,c\) — любые числа \((a≠0)\). При этом надо быть внимательным, если \(a=0\), то уравнение будет линейным, а не квадратным. Поэтому, первым делом при решении квадратного уравнения с параметром, рекомендую смотреть на коэффициент при \(x^2\) и рассматривать 2 случая: \(a=0\) (линейное уравнение); \(a≠0\) (квадратное уравнение). Квадратное уравнение часто решается при помощи дискриминанта или теоремы Виета.

Исследование квадратного многочлена

Чтобы решить квадратное уравнение с параметром, нужно понять, при каких значениях параметра существуют корни, и найти их, выразив через параметр. Обычно это делается просто через анализ дискриминанта. (см. пример 1) Но иногда в задачах с параметром просят найти такие значения параметра, при которых корни принадлежат определенному числовому промежутку. Например:

  • Найдите такие значения параметра, чтобы оба корня были меньше некоторого числа \(γ\): \(x_1≤x_2 0)\); ветки параболы направлены вниз \((a 0\). Значит, между корнями функция принимает отрицательные значения, а вне этого отрезка – положительные. Так как наше число \(γ\) должно по условию лежать вне отрезка \((x_1,x_2)\), то \(f(γ)>0\).
  • \(a 0\). Этим условием мы накладываем ограничение, что наши корни должны лежать слева или справа от числа \(γ\).

В итоге получаем:

если \(a*f(γ) 0\), то \(γ∉(x_1,x_2)\).

Нам осталось наложить условие, чтобы наши корни были слева от числа \(γ\). Здесь нужно просто сравнить положение вершины нашей параболы \(x_0\) относительно \(γ\). Заметим, что вершина лежит между точками \(x_1\) и \(x_2\). Если \(x_0 0, \\x_0

При каких значениях параметра a уравнение $$a(a+3) x^2+(2a+6)x-3a-9=0$$ имеет более одного корня?

1 случай: Если \(a(a+3)=0\), то уравнение будет линейным. При \(a=0\) исходное уравнение превращается в \(6x-9=0\), корень которого \(x=1,5\). Таким образом, при \(a=0\) уравнение имеет один корень.
При \(a=-3\) получаем \(0*x^2+0*x-0=0\), корнями этого уравнения являются любые рациональные числа. Уравнение имеет бесконечное количество корней.

2 случай: Если \(a≠0; a≠-3\), то получим квадратное уравнение. При положительном дискриминанте уравнение будет иметь более одного корня: $$D>0$$ $$D/4=(a+3)^2+3a(a+3)^2>0$$ $$(a+3)^2 (3a+1)>0$$ $$a>-\frac<1><3>.$$ С учетом \(a≠0;\) \(a≠-3\), получим, что уравнение имеет два корня при \(a∈(-\frac<1><3>;0)∪(0;+∞)\). Объединив оба случая получим (внимательно прочитайте, что от нас требуется):

Найти все значения параметра a, при которых корни уравнения $$(a+1) x^2-(a^2+2a)x-a-1=0$$ принадлежат отрезку \([-2;2]\).

1 случай: Если \(a=-1\), то \(0*x^2-x+1-1=0\) отсюда \(x=0\). Это решение принадлежит \([-2;2]\).

2 случай: При \(a≠-1\), получаем квадратное уравнение, с условием, что все корни принадлежат \([-2;2]\). Для решения введем функцию \(f(x)=(a+1) x^2-(a^2+2a)x-a-1\) и запишем систему, которая задает требуемые условия:

Подставляем полученные выражения в систему:

Системы уравнений по-шагам

Результат

Примеры систем уравнений

  • Метод Гаусса
  • Метод Крамера
  • Прямой метод
  • Система нелинейных уравнений

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:


источники:

http://sigma-center.ru/quadratic_equation_parametr

http://mrexam.ru/systemofequations