Решение уравнения второй степени с одним неизвестным

Степень уравнения

Кроме разделения уравнений по количеству неизвестных, уравнения также разделяются по степеням неизвестных: уравнения первой степени, уравнения второй степени и так далее.

Чтобы определить степень уравнения, в нём нужно предварительно сделать следующие преобразования:

  • раскрыть скобки,
  • освободить уравнение от дробных членов,
  • перенести все неизвестные члены в одну из частей уравнения,
  • сделать приведение подобных членов.

После выполнения всех этих преобразований, степень уравнения определяется по следующим правилам:

Степенью уравнения с одним неизвестным называется показатель при неизвестном в том члене уравнения, в котором этот показатель наибольший.

10 — x = 2 — уравнение первой степени с одним неизвестным;

x 2 + 7x = 16 — уравнение второй степени с одним неизвестным;

x 3 = 8 — уравнение третьей степени с одним неизвестным.

Степенью уравнения с несколькими неизвестными называется сумма показателей при неизвестных в том члене уравнения, в котором эта сумма наибольшая.

Для примера возьмём уравнение

Для наглядности расставим показатели первой степени (которые обычно не ставят):

3x 2 y 1 + x 1 y 1 + 25 1 = 0.

Теперь посчитаем суммы показателей для тех членов уравнения, в которых присутствуют неизвестные:

3x 2 y 1 — сумма показателей равна 2 + 1 = 3;

x 1 y 1 — сумма показателей равна 1 + 1 = 2.

Сумма показателей у первого члена уравнения больше, чем у второго, значит, при определении степени уравнения будем ориентироваться на сумму показателей первого члена. Это значит, что про данное уравнение можно сказать, что это уравнение третьей степени с двумя неизвестными.

2xyx = 25 — уравнение второй степени с двумя неизвестным,

xy 2 — 2xy + 8y = 0 — уравнение третьей степени с двумя неизвестными.

Уравнения второй степени: формулы, как их решать, примеры, упражнения

Уравнения второй степени: формулы, как их решать, примеры, упражнения — Наука

Содержание:

В квадратные или квадратные уравнения и неизвестное имеют видтопор 2 + bx + c = 0.Где a ≠ 0, поскольку если бы он был равен 0, уравнение было бы преобразовано в линейное уравнение, а коэффициенты a, b и c — действительные числа.

Неизвестным, которое предстоит определить, является значение x. Например, уравнение 3x 2 — 5x + 2 = 0 — полное квадратное уравнение.

Существуют также варианты, известные как неполные уравнения второй степени, в которых отсутствуют какие-либо члены, кроме топор 2 . Вот некоторые примеры:

Аль-Джуарисми, известный арабский математик античности, описал в своих работах различные типы уравнений первой и второй степени, но только с положительными коэффициентами. Однако именно французский математик Франсуа Вите первым ввел буквы для обозначения величин и предложил решение с помощью формулы решительный:

Это общая формула, позволяющая решить квадратное уравнение, найти его корни или нули, даже если решения не являются действительными. Есть и другие способы их решения.

Как решать квадратные уравнения?

Уравнения второй степени могут быть решены с использованием формулы, приведенной выше, и есть также другие алгебраические процедуры, которые могут дать результаты в некоторых уравнениях.

Мы собираемся решить уравнение, предложенное в начале, с формулой, подходящим методом для любого квадратного уравнения с одной неизвестной:

Чтобы правильно использовать формулу, обратите внимание, что:

  • к коэффициент при члене с x 2
  • б коэффициент при линейном члене
  • c это самостоятельный термин.

Мы собираемся идентифицировать их с помощью того же уравнения:

Обратите внимание, что знак, который сопровождает коэффициент, необходимо учитывать. Теперь подставляем эти значения в формулу:

В числителе стоит символ «плюс — минус» ±, который указывает, что величина с корнем может приниматься как положительная, так и отрицательная. Квадратное уравнение имеет не более двух действительных решений, и этот символ учитывает это.

Позвоните x1 и х2 к этим двум решениям, то:

Икс2 = (5-1) / 6 = 4/6 = 2/3

Разрешение по факторингу

Некоторые уравнения второй степени состоят из трехчленов, которые легко разложить на множители. Если так, то этот метод работает намного быстрее. Рассмотрим уравнение:

Икс 2 + 7x — 18 = 0

Факторизация имеет следующий вид:

Пустые места заполняются двумя числами, которые при умножении дают 18, а при вычитании — 7. Знаки в скобках выбираются по этому критерию:

-В первой скобке знак ставится между первым и вторым слагаемыми.

-А во второй скобке указано произведение увиденных знаков.

Что касается чисел, то в этом случае их легко подсчитать: это 9 и 2. Самый большой всегда помещается в первую из круглых скобок, например:

Икс 2 + 7x — 18 = (x + 9). (х — 2)

Читатель может проверить с помощью свойства дистрибутивности, что при построении произведения правой части равенства получается трехчлен левой. Теперь уравнение переписано:

Для выполнения равенства достаточно, чтобы один из двух множителей был равен нулю. Итак, в первом x должно быть выполнено1 = -9 или может оказаться, что второй множитель исчезнет, ​​и в этом случае x2 = 2. Это решения уравнения.

Графический метод

Корни или решения квадратного уравнения соответствуют пересечениям параболы y = топор 2 + bx + c с горизонтальной осью или осью x. Таким образом, при построении графика соответствующей параболы мы найдем решение квадратного уравнения, сделав y = 0.

Разрезы параболы с горизонтальной осью представляют собой решения уравнения топор 2 + bx + c = 0. Парабола, которая пересекает горизонтальную ось только в одной точке, имеет единственный корень, и он всегда будет вершиной параболы.

И наконец, если парабола не пересекает горизонтальную ось, соответствующее уравнениетопор 2 + bx + c = 0 ему не хватает реальных решений.

Построение графика вручную может быть трудоемким, но с использованием онлайн-программ для построения графиков это очень просто.

Разрешение научного калькулятора

Многие модели научных калькуляторов позволяют решать квадратные уравнения (а также уравнения других типов). Чтобы узнать это, вам нужно проверить меню.

После выбора варианта квадратного уравнения для одного неизвестного, меню просит ввести значения коэффициентов a, b и c и возвращает реальные решения, если они существуют. И есть также модели научных калькуляторов, которые работают с комплексными числами и предлагают эти решения.

Дискриминант квадратного уравнения

Чтобы узнать, имеет ли уравнение действительные решения или нет и сколько их, без необходимости сначала решать, дискриминант Δ определяется как величина под квадратным корнем:

По знаку дискриминанта известно, сколько решений имеет уравнение по этому критерию:

-Два реальных решения: Δ> 0

-Реальное решение (или два одинаковых решения): Δ = 0

-Нет реального решения: Δ 2 + 12x + 64 = 0? Идентифицируем коэффициенты:

Δ = Ь 2 — 4ac = 12 2 — 4x (-7) x 64 = 144 + 1792 = 1936> 0

У уравнения есть два решения. Теперь посмотрим на этот другой:

Икс 2 — 6x + 9 = 0

Δ = (-6) 2 — 4 х 1 х 9 = 36 — 36 = 0

Это уравнение с одним решением или с двумя равными решениями.

Примеры простых квадратных уравнений

Вначале мы сказали, что уравнения второй степени могут быть полными, если трехчлен есть, и неполными, если линейный член или независимый член отсутствует. Теперь давайте посмотрим на некоторые конкретные типы:

Уравнение вида x 2 + mx + n = 0

В этом случае a = 1 и формула сводится к:

Для этого типа уравнения и всегда в зависимости от оставшихся коэффициентов, метод факторизации может работать хорошо, как мы видели в предыдущем разделе.

Неполное уравнение вида ax 2 + c = 0

Решение, если оно существует, имеет вид:

Когда a или c имеют отрицательный знак, существует реальное решение, но если два члена имеют одинаковый знак, решение будет мнимым.

Неполное уравнение вида ax 2 + bx = 0

Это уравнение быстро решается с использованием факторизации, поскольку x является общим множителем в обоих терминах. Одно из решений всегда x = 0, другое находится так:

ах + Ь = 0 → х = -b / а

Давайте посмотрим на пример ниже. Решить:

Следовательно, x1 = 0 и x2 = 5

Уравнения со знаменателем

Существуют различные уравнения рационального типа, в которых неизвестное может присутствовать как в числителе, так и в знаменателе или даже только в последнем, и которые с помощью алгебраических манипуляций сводятся к квадратным уравнениям.

Чтобы решить их, нужно умножить обе части равенства на наименьшее общее кратное или m.c.m знаменателей, а затем переставить члены. Например:

Уравнения высшего порядка, которые становятся квадратичными

Существуют уравнения более высокого порядка, которые можно решить, как если бы они были квадратичными, с помощью замены переменной, например это уравнение двуквадратный:

Икс 4 — 10x 2 + 9 = 0

Пусть x 2 = u, тогда уравнение принимает вид:

или 2 — 10u + 9 = 0

Это уравнение быстро решается путем факторизации, нахождения двух чисел, которые умножаются на 9 и складываются с 10. Это числа 9 и 1:

Следовательно, решениями этого уравнения являются u1 = 9 и u2 = 1. Теперь возвращаем изменение:

Икс 2 = 9 → х1 = 3 и x2 = -3

Икс 2 = 1 → х1 = 1 и x2 = -1

Исходное уравнение имеет порядок 4, поэтому у него не менее 4 корней. В примере это -3, -1, 1 и 3.

Простые решаемые упражнения

— Упражнение 1

Решите следующее квадратное уравнение с неизвестным в знаменателе:

Наименьшее общее кратное — это x (x + 2), и вы должны умножить все члены:

Эквивалентное выражение остается:

5х (х + 2) — х = х (х + 2)

5x 2 + 10х — х = х 2 + 2x

Все слагаемые переносим слева от равенства, а справа оставляем 0:

5x 2 + 10х — х — х 2 — 2x = 0

Мы учитываем, поскольку это неполное уравнение:

Одно из решений x = 0, другое:

— Упражнение 2.

Найдите решение квадратных уравнений:

а) -7x 2 + 12x + 64 = 0

б) х 2 — 6x + 9 = 0

Решение для

Из этого уравнения мы знаем определитель Δ, потому что он был вычислен в качестве примера ранее, поэтому мы собираемся воспользоваться им, выразив разрешающую формулу следующим образом:

Икс1 = (-12+44) / -14 = – (32/14) = – (16/7)

Икс2 = (-12 – 44) / -14 = 4

Решение б

Квадратный трехчлен x 2 — 6x + 9 факторизуем, так как это трехчлен полного квадрата:

Икс 2 — 6х + 9 = (х-3) 2 = 0

Решение этого уравнения — x = 3.

— Упражнение 3.

Какое уравнение имеет решения 3 и 4?

Решение

Применение распределительного свойства:

Икс 2 — 4х -3х + 12 = 0

Два центральных члена похожи и могут быть сокращены, в результате чего остается:

Икс 2 — 7х + 12 = 0

Ссылки

  1. Балдор. 1977. Элементарная алгебра. Венесуэльские культурные издания.
  2. Хоффман, Дж. Выбор тем по математике. Том 2.
  3. Хименес, Р. 2008. Алгебра. Прентис Холл.
  4. Стюарт, Дж. 2006. Precalculus: математика для исчисления. 5-е. Издание. Cengage Learning.
  5. Сапата, Ф. 4 способа решения квадратного уравнения. Получено с: francesphysics.blogspot.com.
  6. Зилл, Д. 1984. Алгебра и тригонометрия. Макгроу Хилл.

Как учиться, не скучая: 6 советов

Полихлорид алюминия: состав, свойства, получение, применение.

Как решать
показательные уравнения?

Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.

Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной \(х\) не в основании степени, а в самом показателе. Как это выглядит:

Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:

Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение \(х\). Познакомиться с понятием степени и ее свойствами можно тут и тут.

И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:

И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.

Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.

Простейшие показательные уравнения

Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:

Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо \(х\) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:

Значит, если \(х=3\), то мы получим верное равенство, а значит мы решили уравнение.

Решим что-нибудь посложнее.

Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:

Мы применили свойство отрицательной степени по формуле:

Теперь наше уравнение будет выглядеть так:

Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны \(3\), только вот степени разные – слева степень \((4х-1)\), а справа \((-2)\). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:

Такое мы решать умеем, ведь это обыкновенное линейное уравнение.

Поздравляю, мы нашли корень нашего показательного уравнения.

Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что \(125=5*5*5=5^3\), а \(25=5*5=5^2\), подставим:

Воспользуемся одним из свойств степеней \((a^n)^m=a^\):

И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:

И еще один пример:

Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить \(2\) в различную степень, вы никогда не сможете получить отрицательное число.

Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.

Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

Где \(a,b\) какие-то положительные числа. (\(a>0, \; b>0\).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит \(a^x\), с этим ничего делать не будем, а вот справа у нас стоит загадочное число \(b\), которое нужно попытаться представить в виде \(b=a^m\). Тогда уравнение принимает вид:

Раз основания одинаковые, то мы можем просто приравнять степени:

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Замечаем, что \(16=2*2*2*2=2^4\) это степень двойки:

Основания одинаковые, значит можно приравнять степени:

$$x=4.$$
Пример 6 $$5^<-x>=125 \Rightarrow 5^<-x>=5*5*5 \Rightarrow 5^<-x>=5^3 \Rightarrow –x=3 \Rightarrow x=-3.$$
Пример 7 $$9^<4x>=81 \Rightarrow (3*3)^<4x>=3*3*3*3 \Rightarrow(3^2)^<4x>=3^4 \Rightarrow 3^<8x>=3^4 \Rightarrow 8x=4 \Rightarrow x=\frac<1><2>.$$

Здесь мы заметили, что \(9=3^2\) и \(81=3^4\) являются степенями \(3\).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

\(3\) и \(2\) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число \(b>0\), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице \(a>0, \; a \neq 1\):

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим \(2\) в виде \(3\) в какой-то степени, где \(a=3\), а \(b=2\):

Подставим данное преобразование в наш пример:

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: \(a^x=b\), где \(a>0; \; b>0\).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа \(a^x=b\), где \(a>0; \; b>0\). Рассмотрим типы сложных уравнений, которые могут попасться:

Решение показательных уравнений при помощи замены

Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.

Здесь это сделать легко, замечаем, что \(9=3^2\), тогда \(9^x=(3^2)^x=3^<2x>=(3^x)^2\). Здесь мы воспользовались свойством степеней: \((a^n)^m=a^\). Подставим:

Обратим внимание, что во всем уравнении все \(х\) «входят» в одинаковую функцию — \(3^x\). Сделаем замену \(t=3^x, \; t>0\), так как показательная функция всегда положительна.

Квадратное уравнение, которое решается через дискриминант:

Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:

И второй корень:

И еще один пример на замену:

Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание \(3\). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член \(3=2+1\) и вынести общий множитель \(2\):

Подставим в исходное уравнение:

Теперь показательные функции одинаковы и можно сделать замену:

Обратная замена, и наше уравнение сводится к простейшему:

И второе значение \(t\):

Тут у нас две показательные функции с основаниями \(7\) и \(3\), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на \(3^x\):

Здесь нам придется воспользоваться свойствами степеней:

Разберем каждое слагаемое:

Теперь подставим получившееся преобразования в исходное уравнение:

Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену \(t=(\frac<7><3>)^x\):

Сделаем обратную замену:

И последний пример на замену:

Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:

Разберем каждое слагаемое нашего уравнения:

Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны — отрицательная степень не имеет никакого отношения к знаку показательной функции!

И последнее слагаемое со степенью:

Подставим все наши преобразования в исходное уравнение:

Теперь можно сделать замену \(t=2^x\) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель \(2^x\)):

Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.

И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут

Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании \(2\), \(5\) и \(10\). Очевидно, что \(10=2*5\). Воспользуемся этим и подставим в наше уравнение:

Воспользуемся формулой \((a*b)^n=a^n*b^n\):

И перекинем все показательные функции с основанием \(2\) влево, а с основанием \(5\) вправо:

Сокращаем и воспользуемся формулами \(a^n*a^m=a^\) и \(\frac=a^\):

Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.

Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!


источники:

http://ru1.warbletoncouncil.org/ecuaciones-de-segundo-grado-13071

http://sigma-center.ru/exponential_equations