Решение всех типов логарифмических уравнений

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).

Логарифмические уравнения и системы

п.1. Методы решения логарифмических уравнений

При решении логарифмических уравнений используются следующие основные методы:
1) переход от логарифмического уравнения к равносильному уравнению \(f(x)=g(x)\) с системой неравенств, описывающих ОДЗ;
2) графический метод;
3) замена переменной.

п.2. Решение уравнений вида \(\log_a f(x)=\log_a g(x)\)

Неравенства \( \begin f(x)\gt 0\\ g(x)\gt 0 \end \) в системе соответствуют ограничению ОДЗ для аргумента логарифмической функции.

Решать логарифмическое уравнение принято в таком порядке:
1) решить систему неравенств и получить промежутки допустимых значений для \(x\) в явном виде;
2) решить уравнение \(f(x)=g(x)\);
3) из полученных корней выбрать те, что входят в промежутки допустимых значений. Записать ответ.

Однако, если выражения \(f(x)\) и \(g(x)\) слишком сложны для явного решения, возможен другой порядок действий:
1) решить уравнение \(f(x)=g(x)\);
2) провести подстановку: полученные корни подставить в выражения для \(f(x)\) и \(g(x)\), и проверить, получатся ли положительные значения для этих функций;
3) из корней выбрать те, для которых подстановка оказалась успешной. Записать ответ.

Например:
Решим уравнение \(\lg(2x+3)+\lg(x+4)=\lg(1-2x)\)
Найдем ОДЗ в явном виде:
\( \begin 2x+3\gt 0\\ x+4\gt 0\\ 1-2x\gt 0 \end \Rightarrow \begin x\gt-\frac32\\ x\gt-4\\ x\lt\frac12 \end \Rightarrow -\frac32\lt x\lt\frac12\Rightarrow x\in\left(-\frac32;\frac12\right) \)
Решаем уравнение:
\(\lg\left((2x+3)(x+4)\right)=\lg(1-2x)\)
\((2x+3)(x+4)=1-2x\)
\(2x^2+11x+12-1+2x=0\)
\(2x^2+13x+11=0\)
\((2x+11)(x+1)=0\)
\( \left[ \begin x_1=-5,5\\ x_2=-1 \end \right. \)
Корень \(x_1=-5,5\notin \left(-\frac32;\frac12\right),\) т.е. не подходит.
Корень \(x_2=-1\in \left(-\frac32;\frac12\right)\) — искомое решение.
Ответ: -1

п.3. Решение уравнений вида \(\log_ f(x)=\log_ g(x)\)

Как и в предыдущем случае, можно сначала найти ОДЗ, а потом решать уравнение.
Или же, можно решить уравнение, а потом проверить требования ОДЗ прямой подстановкой полученных корней.

Например:
Решим уравнение \(\log_(x^2-4)=\log_(2-x)\)
Найдем ОДЗ в явном виде:
\( \begin x^2-4\gt 0\\ 2-x\gt 0\\ x+5\gt 0\\ x+5\ne 1 \end \Rightarrow \begin x\lt -2\cup x\gt 2\\ x\lt 2\\ x\gt -5\\ x\ne -4 \end \Rightarrow \begin -5\lt x\lt -2\\ x\ne -4 \end \Rightarrow x\in (-5;-4)\cup(-4;-2) \)
Решаем уравнение:
\(x^2-4=2-x\)
\(x^2+x-6=0\)
\((x+3)(x-2)=0\)
\( \left[ \begin x_1=-3\\ x_2=2 — \ \text <не подходит>\end \right. \)
Ответ: -3

В логарифмическом уравнении перед отбрасыванием логарифмов основания обязательно должны быть равны. Не забывайте это проверять!

Например:
Решим уравнение \(\log_<2>(x+1)=\log_<4>(x+3)\)
Основания \(2\ne 4\), и нельзя сразу написать \(x+1=x+3\).
Нужно привести к одному основанию, преобразовав левую часть:
\(\log_2(x+1)=\log_<2^2>(x+1)^2=\log_4(x+1)^2\)
Тогда исходное уравнение примет вид: \(\log_4(x+1)^2=\log_4(x+3)\)
И теперь: \((x+1)^2=x+3\)
\(x^2+x-2=0\)
\((x+2)(x-1)=0\)
\( \left[ \begin x_1=-2\\ x_2=1 \end \right. \)
Что касается ОДЗ, то её нужно искать для исходного уравнения:
\( \begin x+1\gt 0\\ x+3\gt 0 \end \Rightarrow \begin x\gt -1\\ x\gt -3 \end \Rightarrow x\gt -1 \)
Корень \(x_1=-2\lt -1\) — не подходит.
Ответ: 1

Преобразования могут расширить первоначальную область допустимых значений (например, при возведении в квадрат), и вы включите в решение лишние корни.
Преобразования также могут сузить ОДЗ (например, при взятии корня), и некоторые решения окажутся потеряны.
Поэтому ОДЗ определяется для исходного уравнения (выражения, неравенства), а не того, которое получено после преобразований.

п.4. Примеры

Пример 1. Решите уравнения:
a) \( \log_2(x+1)-\log_2(x-1)=1 \)
ОДЗ: \( \begin x+1\gt 0\\ x-1\gt 0 \end \Rightarrow \begin x\gt -1\\ x\gt 1 \end \Rightarrow x\gt 1 \)
\(\log_2\left((x+1)(x-1)\right)=\log_22\)
\(x^2-1=2\Rightarrow x^2 =3\)
\( \left[ \begin x_1=-\sqrt<3>\lt 2 — \text<не подходит>\\ x_2=\sqrt <3>\end \right. \)
Ответ: \(\sqrt<3>\)

б) \( 2\log_5(x-1)=\log_5(1,5x+1) \)
ОДЗ: \( \begin x-1\gt 0\\ 1,5x+1\gt 0 \end \Rightarrow \begin x\gt 1\\ x\gt-\frac23 \end \Rightarrow x\gt 1 \)
Преобразуем: \(2\log_5(x-1)=\log_5(x-1)^2\)
Получаем: \(\log_5(x-1)^2=\log_5(1,5x+1)\)
\((x-1)^2=1,5x+1\)
\(x^2-2x+1-1,5x-1=0\Rightarrow x^2-3,5x=0\Rightarrow x(x-3,5)=0\)
\( \left[ \begin x_1=0\lt 1 — \text<не подходит>\\ x_2=3,5 \end \right. \)
Ответ: 3,5

в) \( \log_3(3-x)+\log_3(4-x)=1+2\log_3 2 \)
ОДЗ: \( \begin 3-x\gt 0\\ 4-x\gt 0 \end \Rightarrow \begin x\lt 3\\ x\lt 4 \end \Rightarrow x\lt 3 \)
Преобразуем: \(1+2\log_3 2=\log_3 3+\log_3 2^2=\log_3(3\cdot 4)=\log_3 12\)
Получаем: \(\log_3\left((3-x)(4-x)\right)=\log_3 12\)
\((3-x)(4-x)=12\Rightarrow 12-7x+x^2=12\Rightarrow x(x-7)=0\)
\( \left[ \begin x_1=0\\ x_2=7\gt 3 — \text <не подходит>\end \right. \)
Ответ: 0

г) \( \log_2^2x+\log_2 x^2+1=0 \)
ОДЗ: \(x\gt 0\)
\(\log_2x^2=2\log_2x\)
Получаем: \(\log_2^2x+2\log_2x+1=0\)
Замена: \(t=\log_2 x\)
\(t^2+2t+1=0\Rightarrow(t+1)^2=0\Rightarrow t=-1\)
Возвращаемся к исходной переменной: \(\log_2x=-1\)
\(x=2^<-1>=\frac12\)
Ответ: \(\frac12\)

д) \( x^<\lg x>=10 \)
ОДЗ: \(x\gt 0\)
Замена: \(t=\lg ⁡x\). Тогда \(x=10^t\)
Подставляем:
\((10^t)^t=10\Rightarrow 10^=10^1\Rightarrow t^2=1\Rightarrow t=\pm 1\)
Возвращаемся к исходной переменной:
\( \left[ \begin \lg x=-1\\ \lg x=1 \end \right. \Rightarrow \left[ \begin x=10^<-1>\\ x=10 \end \right. \Rightarrow \left[ \begin x_1=0,1\\ x_2=10 \end \right. \)
Оба корня подходят.
Ответ:

e) \( \sqrt\cdot \log_5(x+3)=0 \)
ОДЗ: \( \begin x\geq 0\\ x+3\gt 0 \end \Rightarrow \begin x\geq 0\\ x\gt -3 \end \Rightarrow x\geq 0 \)
\( \left[ \begin \sqrt=0\\ \log_5(x+3)=0 \end \right. \Rightarrow \left[ \begin x=0\\ x+3=5^0=1 \end \right. \Rightarrow \left[ \begin x_1=0\\ x_2=-2\lt 0 — \text <не подходит>\end \right. \)
Ответ: 0

ж) \( \log_<5x-2>2+2\log_<5x-2>x=\log_<5x-2>(x+1) \)
ОДЗ: \( \begin x\gt 0\\ x+1\gt 0\\ 5x-2\gt 0\\ 5x-2\ne 1 \end \Rightarrow \begin x\gt 0\\ x\gt -1\\ x\gt\frac25\\ x\ne\frac35 \end \Rightarrow \begin x\gt\frac25\\ x\ne\frac35 \end \)
Преобразуем: \(\log_<5x-2>2+2\log_<5x-2>x=\log_<5x-2>(2x^2)\)
Подставляем: \(\log_<5x-2>(2x^2)=\log_<5x-2>(x+1)\)
\( 2x^2=x+1\Rightarrow 2x^2-x-1=0\Rightarrow (2x+1)(x-1)=0 \Rightarrow \left[ \begin x_1=-\frac12 — \text<не подходит>\\ x_2=1 \end \right. \)
Ответ: 1

Пример 2*. Решите уравнения:
a) \( \log_4\log_2\log_3(2x-1)=\frac12 \)
ОДЗ: \( \begin 2x-1\gt 0\\ \log_3(2x-1)\gt 0\\ \log_2\log_3(2x-1)\gt 0 \end \Rightarrow \begin x\gt\frac12\\ 2x-1\gt 3^0\\ \log_3(2x-1)\gt 2^0 \end \Rightarrow \begin x\gt\frac12\\ x\gt 1\\ 2x-1\gt 3^1 \end \Rightarrow \)
\( \Rightarrow \begin x\gt\frac12\\ x\gt 1\\ x\gt 2 \end \Rightarrow x\gt 2 \)
Решаем:
\(\log_2\log_3(2x-1)=4^<1/2>=2\)
\(\log_3(2x-1)=2^2=4\)
\(2x-1=3^4=81\)
\(2x=82\)
\(x=41\)
Ответ: 41

б) \( \log_2(9-2^x)=25^<\log_5\sqrt<3-x>> \)
ОДЗ: \( \begin 9-2x\gt 0\\ 3-x\gt 0 \end \Rightarrow \begin 2^x\lt 9\\ x\lt 3 \end \Rightarrow \begin x\lt\log_2 9\\ x\lt 3 \end \Rightarrow x\lt 3 \)
Преобразуем: \(25^<\log_5\sqrt<3-x>>=25^<\log_<5^2>(\sqrt<3-x>)^2>=25^<\log_<25>(3-x)>=3-x\)
Подставляем: \(\log_2(9-2^x)=3-x\)
\(9-2^x=2^<3-x>\)
\(9-2^x-\frac<8><2^x>=0\)
Замена: \(t=2^x\gt 0\)
\( 9-t-\frac8t=0\Rightarrow \frac<-t^2+9t-8>=0\Rightarrow \begin t^2-9t+8\gt 0\\ t\ne 0 \end \Rightarrow \begin (t-1)(t-8)=0\\ t\ne 0 \end \Rightarrow \left[ \begin t_1=1\\ t_2=8 \end \right. \)
Возвращаемся к исходной переменной:
\( \left[ \begin 2^x=1\\ 2^x=8 \end \right. \Rightarrow \left[ \begin 2^x=2^0\\ 2^x=2^3 \end \right. \Rightarrow \left[ \begin x_1=0\\ x_2=3 \end \right. \)
По ОДЗ \(x\lt 3\), второй корень не подходит.
Ответ: 0

в) \( \lg\sqrt+\lg\sqrt<2x-3>+1=\lg 30 \)
ОДЗ: \( \begin x-5\gt 0\\ 2x-3\gt 0 \end \Rightarrow \begin x\gt 5\\ x\gt\frac32 \end \Rightarrow x\gt 5 \)
Преобразуем: \(\lg 30-1=\lg 30-\lg 10=\lg\frac<30><10>=\lg 3\)
Подставляем: \(\lg\sqrt+\lg\sqrt<2x-3>=\lg 3\)
\(\frac12\lg(x-5)+\frac12\lg(2x-3)=\lg 3\ |\cdot 2\)
\(\lg(x-4)+\lg(2x-3)=2\lg 3\)
\(\lg\left((x-5)(2x-3)\right)=\lg 3^2\)
\((x-5)(2x-3)=9\Rightarrow 2x^2-13x+15-9=0 \Rightarrow 2x^2-13x+6=0\)
\( (2x-1)(x-6)=0\Rightarrow \left[ \begin x_1=\frac12\lt 5 — \ \text<не подходит>\\ x_2=6 \end \right. \)
Ответ: 6

г) \( \frac<1><\lg x>+\frac<1><\lg 10x>+\frac<3><\lg 100x>=0 \)
ОДЗ: \( \begin x\gt 0\\ \lg x\ne 0\\ \lg 10x\ne 0\\ \lg 100x\ne 0 \end \Rightarrow \begin x\gt 0\\ x\ne 1\\ 10x\ne 1\\ 100x\ne 1 \end \Rightarrow \begin x\gt 0\\ x\ne\left\<\frac<1><100>;\frac<1><10>;1\right\> \end \)
Преобразуем: \(\lg 10x=\lg 10+\lg x=1+\lg 10\)
\(\lg 100x=\lg 100+\lg x=2+\lg x\)
Подставляем: \(\frac<1><\lg x>+\frac<1><1+\lg x>+\frac<3><2+\lg x>=0\)
Замена: \(t=\lg x\)
\begin \frac1t+\frac<1><1+t>+\frac<3><2+t>=0\Rightarrow \frac1t+\frac<1><1+t>=-\frac<3><2+t>\Rightarrow \frac<1+t+t>=-\frac<3><2+t>\Rightarrow (1+2t)(2+t)=(1+t)\\ 2_5t+2t^2=-3t-3t^2\Rightarrow 5t^2+8t+2=0\\ D=8^2-4\cdot 5\cdot 2=24,\ \ t=\frac<-8\pm 2\sqrt<6>><10>=\frac<-4\pm \sqrt<6>> <5>\end Возвращаемся к исходной переменной:
$$ \left[ \begin \lg x=\frac<-4- \sqrt<6>><5>\\ \lg x=\frac<-4+ \sqrt<6>> <5>\end \right. \Rightarrow \left[ \begin x=10\frac<-4- \sqrt<6>><5>\\ x=10\frac<-4+ \sqrt<6>> <5>\end \right. $$ Оба корня подходят.
Ответ: \(\left\<10\frac<-4\pm\sqrt<6>><5>\right\>\)

e) \( x^<\frac<\lg x+7><4>>=10^ <\lg x+1>\)
ОДЗ: \(x\gt 0\)
Замена: \(t=\lg x.\) Тогда \(x=10^t\)
Подставляем: \begin (10^t)^<\frac<4>>=10^\\ \frac<4>=t+1\Rightarrow t(t+7)=4(t+1)\Rightarrow t^2+7t-4t-4=0\\ t^2+3t-4=0\Rightarrow (t+4)(t-1)=0\Rightarrow \left[ \begin t_1=-4\\ t_2=1 \end \right. \end Возвращаемся к исходной переменной:
$$ \left[ \begin \lg x=-4\\ \lg x=1 \end \right. \Rightarrow \left[ \begin x=10^<-4>\\ x=10 \end \right. \Rightarrow \left[ \begin x_1=0,0001\\ x_2=10 \end \right. $$ Оба корня подходят.
Ответ: \(\left\<0,0001;\ 10\right\>\)

ж) \( 4^<\log_3(1-x)>=(2x^2+2x+5)^ <\log_3 2>\)
ОДЗ: \( \begin 1-x\gt 0\\ 2x^2+2x+5\gt 0 \end \Rightarrow \begin x\lt 1\\ D\lt 0,\ x\in\mathbb \end \Rightarrow x\lt 1 \)
По условию: \begin \log_3(1-x)=\log_4\left((2x^2+2x+5)^<\log_32>\right)\\ \log_3(1-x)=\log_32\cdot\log_4(2x^2+2x+5) \end Перейдем к другому основанию: $$ \frac<\lg(1-x)><\lg 3>=\frac<\lg 2><\lg 3>\cdot\frac<\lg(2x^2+2x+5)><\lg 4>\ |\cdot\ \lg 3 $$ \(\frac<\lg 2><\lg 4>=\frac<\lg 2><\lg 2^2>=\frac<\lg 2><2\lg 2>=\frac12\) \begin \lg(1-x)=\frac12\cdot\lg(2x^2+2x+5)\ |\cdot 2\\ 2\lg(1-x)=\lg(2x^2+2x+5)\\ \lg(1-x)^2=\lg(2x^2+2x+5)\\ (1-x)^2=2x^2+2x+5\\ 1-2x+x^2=2x^2+2x+5\\ x^2+4x+4=0\\ (x+2)^2=0\\ x=-2 \end Ответ: -2

Пример 3. Решите систему уравнений:
a) \( \begin \lg x+\lg y=\lg 2\\ x^2+y^2=5 \end \)
ОДЗ: \( \begin x\gt 0\\ y\gt 0 \end \)
Из первого уравнения: \(\lg(xy)=\lg 2\Rightarrow xy=2\)
Получаем: \( \begin xy=2\\ x^2+y^2=5 \end \Rightarrow \begin y=\frac2x\\ x^2+\left(\frac2x\right)^2-5=0 \end \)
Решаем биквадратное уравнение: \begin x^2+\frac<4>-5=0\Rightarrow\frac=0\Rightarrow \begin x^4-5x^2+4=0\\ x\ne 0 \end \\ (x^2-4)(x^2-1)=0\Rightarrow \left[ \begin x^2=4\\ x^2=1 \end \right. \Rightarrow \left[ \begin x=\pm 2\\ x=\pm 1 \end \right. \end Согласно ОДЗ, оставляем только положительные корни.
Получаем две пары решений: \( \left[ \begin \begin x=1\\ y=\frac2x=2 \end \\ \begin x=2\\ y=\frac22=1 \end \end \right. \)
Ответ: \(\left\<(1;2),(2,1)\right\>\)

б) \( \begin x^=27\\ x^<2y-5>=\frac13 \end \)
ОДЗ: \(x\gt 0,\ x\ne 1\)
Логарифмируем: \( \begin y+1=\log_x27=\log_x3^3=3\log_x3\\ 2y-5=\log_x\frac13=\log_x3^<-1>=-\log_x3 \end \)
Замена: \(z=\log_x3\) \begin \begin y+1=3z\\ 2y-5=-z\ |\cdot 3 \end \Rightarrow \begin y+1=3z\\ 6y-15=-3z \end \Rightarrow \begin 7y-14=0\\ z=5-2y \end \Rightarrow \begin y=2\\ z=1 \end \end Возвращаемся к исходной переменной: $$ \begin y=2\\ \log_x3=1 \end \Rightarrow \begin x^1=3\\ y=2 \end \Rightarrow \begin x=3\\ y=2 \end $$
Ответ: (3;2)

в*) \( \begin 3(\log_y x-\log_x y)=8\\ xy=16 \end \)
ОДЗ: \( \begin x\gt 0,\ x\ne 1\\ y\gt 0,\ y\ne 1 \end \)
Сделаем замену \(t=\log_x y\). Тогда \(\log_y x=\frac<1><\log_x y>=\frac1t\)
Подставим в первое уравнение и решим его: \begin 3\left(\frac1t-t\right)=8\Rightarrow\frac<1-t^2>=\frac83\Rightarrow \begin 3(1-t^2)=8t\\ t\ne 0 \end\\ 3t^2+8t-3=0\Rightarrow (3t-1)(t+3)=0\Rightarrow \left[ \begin t_1=\frac13\\ t_2=-3 \end \right. \end Прологарифмируем второе уравнение по \(x\): $$ \log_x(xy)=\log_x16\Rightarrow 1+\log_x y=\log_x16\Rightarrow 1+t=\log_x 16 $$ Получаем: \begin \left[ \begin \begin t=\frac13\\ \log_x16=1+t=\frac43 \end \\ \begin t=-3\\ \log_x16=1+t=-2 \end \end \right. \Rightarrow \left[ \begin \begin t=\frac13\\ x^<\frac43>=16 \end \\ \begin t=-3\\ x^<-2>=16 \end \end \right. \Rightarrow \left[ \begin \begin t=\frac13\\ x=(2^4)^<\frac34>=2^3=8 \end \\ \begin t=-3\\ x=(16)^<-\frac12>=\frac14 \end \end \right. \end Возвращаемся к исходной переменной: \begin \left[ \begin \begin x=8\\ \log_x y=\frac13 \end \\ \begin x=\frac14\\ \log_x y=-3 \end \end \right. \Rightarrow \left[ \begin \begin x=8\\ y=8^<\frac13>=2 \end \\ \begin x=\frac14\\ y=\left(\frac14\right)^<-3>=64 \end \end \right. \end
Ответ: \(\left\<(8;2),\left(\frac14; 64\right)\right\>\)

г*) \( \begin (x+y)\cdot 3^=\frac<5><27>\\ 3\log_5(x+y)=x-y \end \)
ОДЗ: \(x+y\gt 0\)
Прологарифмируем первое уравнение по 3: \begin \log_3\left((x+y)\cdot 3^\right)=\log_3\frac<5><27>\\ \log_3(x+y)+(y-x)=\log_3\frac<5><27>\\ \log_3(x+y)-\log_3\frac<5><27>=x-y \end Получаем:\(x-y=3\log_5(x+y)=\log_3(x+y)-\log_3\frac<5><27>\)
Решим последнее уравнение относительно \(t=x+y\) \begin 3\log_5 t=\log_3 t-\log_3\frac<5><27>\\ 3\cdot\frac<\log_3t><\log_35>-\log_3t=-\log_3\frac<5><27>\\ \log_3t\cdot\left(\frac<3><\log_35>-1\right)=-\log_3\frac<5><27>\\ \log_3t=-\frac<\log_3\frac<5><27>><\frac<3><\log_35>-1>=-\frac<(\log_35-3)\log_35><3-\log_35>=\log_35\\ t=5 \end Тогда: \(x-y=3\log_5t=3\log_55=3\)
Получаем систему линейных уравнений: \begin \begin x+y=5\\ x-y=3 \end \Rightarrow \begin 2x=5+3\\ 2y=5-3 \end \Rightarrow \begin x=4\\ y=1 \end \end Требование ОДЗ \(x+y=4+1\gt 0\) выполняется.
Ответ: (4;1)

Логарифмические уравнения

Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

$log_<2>8 = 3$, т.к. $2^3 = 8;$

Особенно можно выделить три формулы:

Основное логарифмическое тождество:

Это равенство справедливо при $b> 0, a> 0, a≠ 1$

Некоторые свойства логарифмов

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любого действительного числа $m$ справедливы равенства:

2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_b>0$, а если по разные, то $log_b 0$

Представим обе части уравнения в виде логарифма по основанию 2

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

Проверим найденные корни по условиям: $\<\table \x^2-3x-5>0; \7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.

Решить уравнение $log_5log_2(x+1)=1$

Сделаем в обеих частях уравнения логарифмы по основанию $5$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Далее представим обе части уравнения в виде логарифма по основанию $2$

ОДЗ данного уравнения $x+1>0$

Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.


источники:

http://reshator.com/sprav/algebra/10-11-klass/logarifmicheskie-uravneniya-i-sistemy/

http://examer.ru/ege_po_matematike/teoriya/logarifmicheskie_uravneniya