Решение задач по уравнению аррениуса

Решение задач по уравнению аррениуса

Из качественных соображений понятно, что скорость реакций должна увеличиваться с ростом температуры, т.к. при этом возрастает энергия сталкивающихся частиц и повышается вероятность того, что при столкновении произойдет химическое превращение. Для количественного описания температурных эффектов в химической кинетике используют два основных соотношения — правило Вант-Гоффа и уравнение Аррениуса.

Правило Вант-Гоффа заключается в том, что при нагревании на 10 о С скорость большинства химических реакций увеличивается в 2 4 раза. Математически это означает, что скорость реакции зависит от температуры степенным образом:

, (4.1)

где — температурный коэффициент скорости ( = 24). Правило Вант-Гоффа является весьма грубым и применимо только в очень ограниченном интервале температур.

Гораздо более точным является уравнение Аррениуса, описывающее температурную зависимость константы скорости:

, (4.2)

где R — универсальная газовая постоянная; A — предэкспоненциальный множитель, который не зависит от температуры, а определяется только видом реакции; EAэнергия активации, которую можно охарактеризовать как некоторую пороговую энергию: грубо говоря, если энергия сталкивающихся частиц меньше EA, то при столкновении реакция не произойдет, если энергия превышает EA, реакция произойдет. Энергия активации не зависит от температуры.

Графически зависимость k(T) выглядит следующим образом:

При низких температурах химические реакции почти не протекают: k(T) 0. При очень высоких температурах константа скорости стремится к предельному значению: k(T) A. Это соответствует тому, что все молекулы являются химически активными и каждое столкновение приводит к реакции.

Энергию активации можно определить, измерив константу скорости при двух температурах. Из уравнения (4.2) следует:

. (4.3)

Более точно энергию активации определяют по значениям константы скорости при нескольких температурах. Для этого уравнение Аррениуса (4.2) записывают в логарифмической форме

и записывают экспериментальные данные в координатах ln k — 1/T. Тангенс угла наклона полученной прямой равен —EA / R.

Для некоторых реакций предэкспоненциальный множитель слабо зависит от температуры. В этом случае определяют так называемую опытную энергию активации:

. (4.4)

Если предэкспоненциальный множитель — постоянный, то опытная энергия активации равна аррениусовской энергии активации: Eоп = EA.

Пример 4-1. Пользуясь уравнением Аррениуса, оцените, при каких температурах и энергиях активации справедливо правило Вант-Гоффа.

Решение. Представим правило Вант-Гоффа (4.1) как степенную зависимость константы скорости:

,

где B — постоянная величина. Сравним это выражение с уравнением Аррениуса (4.2), приняв для температурного коэффициента скорости значение

.

Возьмем натуральный логарифм обеих частей этого приближенного равенства:

.

Продифференцировав полученное соотношение по температуре, найдем искомую связь связь между энергией активации и температурой:

.

Если энергия активации и температура примерно удовлетворяют этому соотношению, то правилом Вант-Гоффа для оценки влияния температуры на скорость реакции пользоваться можно.

Пример 4-2. Реакция первого порядка при температуре 70 о С завершается на 40% за 60 мин. При какой температуре реакция завершится на 80% за 120 мин, если энергия активации равна 60 кДж/моль?

Решение. Для реакции первого порядка константа скорости выражается через степень превращения следующим образом:

,

где a = x/a — степень превращения. Запишем это уравнение при двух температурах с учетом уравнения Аррениуса:

,

где EA = 60 кДж/моль, T1 = 343 K, t1 = 60 мин, a 1 = 0.4, t2 = 120 мин, a 2 = 0.8. Поделим одно уравнение на другое и прологарифмируем:

Подставляя в это выражение приведенные выше величины, находим T2 = 333 К = 60 о С.

Пример 4-3. Скорость бактериального гидролиза мышц рыб удваивается при переходе от температуры -1.1 о С к температуре +2.2 о С. Оцените энергию активации этой реакции.

Решение. Увеличение скорости гидролиза в 2 раза обусловлено увеличением константы скорости: k2 = 2k1. Энергию активации по отношению констант скорости при двух температурах можно определить из уравнения (4.3) с T1 = t1 + 273.15 = 272.05 K, T2 = t2 + 273.15 = 275.35 K:

130800 Дж/моль = 130.8 кДж/моль.

4-1. При помощи правила Вант-Гоффа вычислите, при какой температуре реакция закончится через 15 мин, если при 20 о С на это требуется 2 ч. Температурный коэффициент скорости равен 3.(ответ)

4-2. Время полураспада вещества при 323 К равно 100 мин, а при 353 К — 15 мин. Определите температурный коэффициент скорости.(ответ)

4-3. Какой должна быть энергия активации, чтобы скорость реакции увеличивалась в 3 раза при возрастании температуры на 10 0 С а) при 300 К; б) при 1000 К?(ответ)

4-4. Реакция первого порядка имеет энергию активации 25 ккал/моль и предэкспоненциальный множитель 5 . 10 13 сек -1 . При какой температуре время полураспада для данной реакции составит: а) 1 мин; б) 30 дней?(ответ)

4-5. В каком из двух случаев константа скорости реакции увеличивается в большее число раз: при нагревании от 0 о С до 10 о С или при нагревании от 10 о С до 20 о С? Ответ обоснуйте с помощью уравнения Аррениуса.(ответ)

4-6. Энергия активации некоторой реакции в 1.5 раза больше, чем энергия активации другой реакции. При нагревании от T1 до T2 константа скорости второй реакции увеличилась в a раз. Во сколько раз увеличилась константа скорости первой реакции при нагревании от T1 до T2?(ответ)

4-7. Константа скорости сложной реакции выражается через константы скорости элементарных стадий следующим образом:

Выразите энергию активации и предэкспоненциальный множитель сложной реакции через соответствующие величины, относящиеся к элементарным стадиям.(ответ)

4-8. В необратимой реакции 1-го порядка за 20 мин при 125 о С степень превращения исходного вещества составила 60%, а при 145 o C такая же степень превращения была достигнута за 5.5 мин. Найдите константы скорости и энергию активации данной реакции .(ответ)

4-9. Реакция 1-го порядка при температуре 25 о С завершается на 30% за 30 мин. При какой температуре реакция завершится на 60% за 40 мин, если энергия активации равна 30 кДж/моль?(ответ)

4-10. Реакция 1-го порядка при температуре 25 о С завершается на 70% за 15 мин. При какой температуре реакция завершится на 50% за 15 мин, если энергия активации равна 50 кДж/моль?(ответ)

4-11. Константа скорости реакции первого порядка равна 4.02 . 10 -4 с -1 при 393 К и 1.98 . 10 -3 с -1 при 413 К. Рассчитайте предэкспоненциальный множитель для этой реакции.(ответ)

4-12. Для реакции H2 + I2 2HI константа скорости при температуре 683 К равна 0,0659 л/(моль. мин), а при температуре 716 К — 0,375 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 700 К.(ответ)

4-13. Для реакции 2N2O 2N2 + O2 константа скорости при температуре 986 К равна 6,72 л/(моль. мин), а при температуре 1165 К — 977,0 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 1053,0 К.(ответ)

4-14. Трихлорацетат-ион в ионизирующих растворителях, содержащих H + , разлагается по уравнению

H + + CCl3COO — CO2 + CHCl3

Стадией, определяющей скорость реакции, является мономолекулярный разрыв связи C- C в трихлорацетат-ионе. Реакция протекает по первому порядку, и константы скорости имеют следующие значения: k = 3.11 . 10 -4 с -1 при 90 о С, k = 7.62 . 10 -5 с -1 при 80 о С. Рассчитайте а) энергию активации, б) константу скорости при 60 о С.(ответ)

4-15. Для реакции CH3COOC2H5 + NaOH ѕ CH3COONa + C2H5OH константа скорости при температуре 282,6 К равна 2,307 л/(моль. мин), а при температуре 318,1 К — 21,65 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 343 К.(ответ)

4-16. Для реакции C12H22O11 + H2O C6H12O6 + C6H12O6 константа скорости при температуре 298,2 К равна 0,765 л/(моль. мин), а при температуре 328,2 К — 35,5 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 313,2 К.(ответ)

4-17. Вещество разлагается двумя параллельными путями с константами скорости k1 и k2. Какова разность энергий активации этих двух реакций, если при 10 o C k1/k2 = 10, а при 40 o C k1/k2 = 0.1?(ответ)

4-18. В двух реакциях одинакового порядка разница энергий активации составляет E2E1 = 40 кДж/моль. При температуре 293 К отношение констант скорости равно k1/k2 = 2. При какой температуре константы скорости сравняются?(ответ)

4-19. Разложение ацетондикарбоновой кислоты в водном растворе — реакция первого порядка. Измерены константы скорости этой реакции при разных температурах:

T, о С

k. 10 5 , с -1

Рассчитайте энергию активации и предэкспоненциальный множитель. Чему равен период полураспада при 25 о С? (ответ)

Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору

Расчеты энергии активации реакции по уравнению Аррениуса

Задача 341.
Чему равна энергия активации реакции, если при повышении температуры от 290 до 300 К скорость ее увеличится в 2 раза?
Решение:
Из уравнения Аррениуса находим:

Ea — энергия активации, k и k’ — константы скорости реакции, Т – температура в К (298). Учитывая, что происходит повышение температуры реакции от 290 К до 300 К, уравнение можно преобразовать, получим:

Ответ: 49,9кДж/моль.

Задача 342.
Каково значение энергии активации реакции, скорость которой при 300 К в 10 раз больше, чем при 280 К?
Решение:
Из уравнения Аррениуса находим:

Ea — энергия активации, k и k’ — константы скорости реакции, Т – температура в К (298). Учитывая зависимость константы скорости реакции от изменения температуры, получим:

Подставляя в последнее уравнение данные задачи и, выражая энергию активации в джоулях, получим:

Ответ: 80,3кДж/моль.

Задача 343.
Энергия активации реакции O3(г) + NO(г) → O2(г) + NO2(г) равна 10 кДж/моль. Во сколько раз изменится скорость реакции при повышении температуры от 27 до 37 °С ?
Решение:
Из уравнения Аррениуса находим:

Ea — энергия активации, k и k’ — константы скорости реакции, Т – температура в К (298). Учитывая зависимость константы скорости реакции от изменения температуры, получим:

Подставляя в последнее уравнение данные задачи и, выражая энергию активации в джоулях, получим:

Окончательно находим: k/k’ = 1,14.

Ответ: В 1,14 раз.

Задача 344.
Зависит ли температурный коэффициент скорости реакции от значения энергии активации? Ответ обосновать.
Решение:
Согласно правилу Вант-Гоффа, зависимость скорости реакции от температуры определяется уравнением:

Здесь vt и kt — скорость и константа скорости реакции при температуре t °С; v(t + 10) и k(t + 10) те же величины при температуре (t + 10 °С ); — температурный коэффициент скорости реакции, значение которого для большинства реакций лежит в пределах 2 — 4 (правило Вант-Гоффа).

Возрастание скорости реакции с ростом температуры принято характеризовать температурным коэффициентом скорости реакции — числом, показывающим, во сколько раз возрастёт скорость данной реакции при повышении температуры системы на 10 градусов. Температурный коэффициент различных реакций различен. В то же время каждая реакция характеризуется определённым барьером энергии; для его преодоления необходима энергия активации – избыточная энергия, которой должны обладать молекулы при данной температуре, для того чтобы их столкновение привело бы к образованию нового вещества. Зависимость константы скорости реакции (k) от энергиия активации (Ea кДж/моль) выражается уравнением Аррениуса: или , где

Еаэнергия активации, k и k’ — константы скорости реакции, Т – температура в К (298). Учитывая зависимость константы скорости реакции от изменения температуры, получим:

Из чего следует, что чем меньше энергия активации и выше температура, тем больше константа скорости реакции и k’/k .

В стандартных условиях энергия активации различных реакций различна и она зависит от природы реагирующих веществ.

Таким образом, температурный коэффициент () не зависит от энергия активации (Ea).

Задача 345.
Зависит ли значение энергии активации реакции в случае гетерогенного катализа от площади поверхности катализатора и от ее структуры?
Решение:
Известно, что катализатор снижает энергию активации реакции, чем дольше активность катализатора, тем большее снижение энергии активации реакции наблюдается в присутствии катализатора.

При гетерогенном катализе реакция протекает на поверхности катализатора. Отсюда следует, что активность катализатора зависит от величины поверхности (площади) его и свойств этой поверхности. Чаще всего используют пористую структуру (пемза, асбест и др.). Чтобы увеличить активность данного катализатора, нужно увеличить площадь соприкосновения его с реагентом. Применяют катализаторы с различной структурой поверхности (пористую, порошковую, в виде колец, трубок и т.п.).

Таким образом, с увеличением площади поверхности твёрдого катализатора увеличивается его активность и, соответственно, значительно уменьшается энергия активация катализируемой реакции.

Задача 346.
Реакция 2Н2(г) + О2(г) = 2Н2О(г) протекает с выделением теплоты. Однако для того, чтобы реакция началась, исходную смесь газов надо нагреть. Как это объяснить?
Решение:
Данная реакция является экзотермической, но для начала протекания реакции необходимо дополнительно подогреть смесь водорода и кислорода. Это можно объяснить тем, что энергия активации реакции слишком велика ( больше 120 кДж/моль), значит лишь только малая часть столкновений молекул водорода и кислорода друг с другом приводит к их взаимодействию. Для того чтобы увеличить число активных столкновений необходимо исходную смесь нагреть, т.е. повысить температуру системы, что вызовет разрыв или ослабление связей между атомами молекул газов. При нагревании смеси Н2 и О2 в отношении 2 : 1 происходит взрыв. Объясняется это тем, что из атомов водорода и кислорода, изначально образовавшихся при подогревании газовой смеси, образуются радикалы * ОН, которые легко реагируют с молекулой Н2 с образованием молекул Н2О и * Н. Последний реагирует с молекулой О2 с образованием радикалов * О *, и * ОН. В свою очередь, атом кислорода, реагируя с молекулой Н2, порождает радикалы * Н и * ОН, при столкновении которых образуется молекула Н2О.

Таким образом, при нагревании смеси водорода и кислорода происходит увеличение образования активных частиц(* О * , *Н, *ОН), что порождает цепную реакцию, и скорость её резко возрастает, происходит взрыв смеси газов.

Задачи к разделу Химическая кинетика и равновесие химической реакции

Задача 1. Дайте определение понятию скорость химической реакции. Опишите количественно (где это можно), как влия­ют на скорость реакции внешние условия (концентрация, тем­пература, давление). Рассчитайте, во сколько раз изменится скорость реакции Н2+С12 = 2НС1 при увеличении давления в 2 раза;

Решение.

Скоростью химической реакции u называют число элементарных актов взаимодействия, в единицу времени, в единице объема для гомогенных реакций или на единице поверхности раздела фаз для гетерогенных реакций. Среднюю скорость химической реакции выражают изменением количества вещества n израсходованного или полученного вещества в единице объема V за единицу времени t. Концентрацию выражают в моль/л, а время в минутах, секундах или часах.

где C – концентрация, моль/л

Единица измерения скорости реакции моль/л·с

Если в некоторые моменты времени t1 и t2 концентрации одного из исходных веществ равна с1 и с2, то за промежуток времени Δt = t2 – t1 , Δc = c2 – c1

ῡ = — ΔC/Δt [моль/л·с]

Если вещество расходуется, то ставим знак «-», если накапливается – «+»

Скорость химической реакции зависит от природы реагирующих веществ, концентрации, температуры, присутствия катализаторов, давления (с участием газов), среды (в растворах), интенсивности света (фотохимические реакции).

Зависимость скорости реакции от природы реагирующих веществ. Каждому химическому процессу присуще определенное значение энергии активации Еа. Причем, скорость реакции. тем больше, чем меньше энергия активации.

Скорость зависит от прочности химических связей в исходных веществах. Если эти связи прочные, то Еа велика, например N2 + 3H2 = 2NH3, то скорость взаимодействия мала. Если Еа равна нулю, то реакция протекает практически мгновенно, например:

HCl (раствор) + NaOH (раствор) = NaCl (раствор) + H2O.

Закон действующих масс. Скорость элементарной гомогенной химической реакции прямо пропорциональна произведению концентраций реагентов, взятых в степенях, равных их стехиометрическим коэффициентам.

Для реакции аА + bB = cC + dD

где [A] и [B] – концентрации веществ А и В в моль/л,

k – константа скорости реакции.

Концентрации твердых веществ, в случае гетерогенной реакции в кинетическое уравнение не включают.

Зависимость скорости реакции от концентрации реагирующих веществ определяется законом действующих масс:

Очевидно, что с увеличением концентраций реагирующих веществ, скорость реакции увеличивается, т.к. увеличивается число соударений между участвующими в реакции веществами. Причем, важно учитывать порядок реакции: если реакция имеет первый порядок по некоторому реагенту, то ее скорость прямо пропорциональна концентрации этого вещества. Если реакция имеет второй порядок по какому-либо реагенту, то удвоение его концентрации приведет к росту скорости реакции в 2 2 = 4 раза, а увеличение концентрации в 3 раза ускорит реакцию в 3 2 = 9 раз.

Зависимость скорости от температуры. Правило Вант-Гоффа: Скорость большинства химических реакций при повышении температуры на 10° увеличивается от 2 до 4 раз.

υТ2 – скорость реакции при температуре t2, υТ1 – скорость реакции при температуре t1, γ — температурный коэффициент (γ = 2¸4).

Влияние катализаторов. Катализаторы увеличивают скорость реакции (положительный катализ). Скорость реакции растет, так как уменьшается энергия активации реакции в присутствии катализатора. Уменьшение энергии активации обусловлено тем, что в присутствии катализатора реакция протекает в несколько стадий с образованием промежуточных продуктов, и эти стадии характеризуются малыми значениями энергии активации.

Ингибиторы замедляют скорость реакции (отрицательный катализ).

При увеличении давления в 2 раза концентрация веществ увеличится тоже в 2 раза и скорость реакции станет равна:

υпрям возрастает в 4 раза.

Задача 2. При установлении равновесия Fe2O3 (т) + 3CO (г) = 2Fe (т) + 3CO2 (г) концентрация [CO] = 1 моль/л и [CO2] = 2 моль/л. Вычислите исходную концентрацию [CO]исх, если начальная концентрация CO2 равна нулю.

Решение.

3 моля СО2 образуется, если в реакцию вступают 3 моля СО,

х = 2 моль, ⇒ исходная концентрация [CO]исх = [CO]pавн + 2 моль = 1 + 2 = 3 моль.

Задача 3.Температурный коэффициент реакции равен 2,5. Как изменится ее скорость при охлаждении реакционной смеси от изменения температуры от 50 °С до 30 °С?

Решение.

Воспользуемся правилом Вант-Гоффа

Скорость реакции уменьшится в 6,25 раз

Задача 4. Рассчитайте скорость реакции между растворами хлорида калия и нитрата серебра, концентрации которых составляют соответственно 0,2 и 0,3 моль/л, а k=1,5∙10 -3 л∙моль -1 ∙с -1

Решение.

Скорость прямой реакции равна:

v = 1,5∙10 -3 · 0,2 · 0,3 = 9·10 -5 моль/л·с

Таким образом скорость реакции равна v = 9·10 -5 моль/л·с

Задача 5. Как следует изменить концентрацию кислорода, чтобы скорость гомогенной элементарной реакции: 2 NО(г) +O2(г) → 2 NО2(г) не изменилась при уменьшении концентрации оксида азота (II) в 2 раза?

Решение .

Скорость прямой реакции равна:

При уменьшении концентрации NО в 2 раза скорость прямой реакции станет равной:

т.е. скорость реакции уменьшится в 4 раза:

Чтобы скорость реакции не изменилась концентрацию кислорода надо увеличить в 4 раза.

Задача 6. При увеличении температуры с 30 до 45 о С скорость гомогенной реакции повысилась в 20 раз. Чему равна энергия активации реакции?

Решение.
Применяя уравнение Аррениуса, получим:
ln 20 = Ea/8,31 · (1/303 – 1/318),
отсюда

Ea = 160250 Дж = 160,25 кДж

Задача 7. Константа скорости реакции омыления уксусноэтилового эфира: СН3СООС2Н5(р-р) + КОН(р-р)→СН3СООК (р-р)2Н5ОН(р-р) равна 0,1 л/моль∙мин. Начальная концентрация уксусноэтилового эфира была равна 0,01 моль/л, а щелочи – 0,05 моль/л. Вычислите начальную скорость реакции и в тот момент, когда концентрация эфира станет равной 0,008 моль/л.

Решение.

Скорость прямой реакции равна:

В тот момент, когда концентрация эфира станет равной 0,008 моль/л, его расход составит

Значит, в этот момент щелочи также израсходовалось [КОН]расход = 0,002 моль/л и ее концентрация станет равной

[КОН]кон = 0,05 – 0,002 = 0,048 моль/л

Вычислим скорость реакции в тот момент, когда концентрация эфира станет равной 0,008 моль/л, а щелочи 0,048 моль/л

υкон = 0,1·0,008·0,048 = 3,84·10 -5 моль/л·мин

Задача 8. Как следует изменить объем реакционной смеси системы:
8NH3(г) + 3Br2(ж)→6NH4Br(к) + N2(г), чтобы скорость реакции уменьшилась в 60 раз?

Решение.

Чтобы уменьшить скорость реакции необходимо увеличить объем системы, т.е. уменьшить давление и, тем самым, уменьшить концентрацию газообразного компонента — NH3. Концентрация Br2 при этом останется постоянной.

Начальная скорость прямой реакции была равна:

при увеличении концентрации аммиака скорость прямой реакции стала равной:

После сокращения всех постоянных, получаем

Таким образом, чтобы уменьшить скорость реакции в 60 раз, надо увеличить объем в 1,66 раз.

Задача 9. Как повлияет на выход хлора в системе:
4HCl(г) +O2(г) ↔2Cl2(г) + 2H2О(ж); ΔН о 298 =−202,4кДж
а) повышение температуры; b) уменьшение общего объема смеси; c) уменьшение концентрации кислорода; d) введение катализатора?

Решение.

  1. ΔН о 298 ˂ 0, следовательно, реакция экзотермическая, поэтому, согласно принципу Ле-Шателье, при повышении температуры равновесие сместится в сторону образования исходных веществ (влево), т.е. выход хлора уменьшится.
  2. При уменьшении давления, равновесие смещается в сторону реакции, идущей с увеличением числа молекул газообразных веществ. В данном случае в равновесие смещается сторону образования исходных веществ (влево), т.е. выход хлора также уменьшится.
  3. Уменьшение концентрации кислорода также будет способствовать смещению равновесия влево и уменьшению выхода хлора.
  4. Внесение катализатора в систему приводит к увеличению скорости как прямой, так и обратной реакций. При этом, изменяется скорость достижения состояния равновесия, но при этом константа равновесия не меняется и смещения равновесия не происходит. Выход хлора останется неизменным.

Задача 10. В системе: PCl5 ↔ PCl3 + Cl2
равновесие при 500 о С установилось, когда исходная концентрация PCl5, равная 1 моль/л, уменьшилась до 0,46 моль/л. Найдите значение константы равновесия при указанной температуре.

Решение.

Запишем выражение для константы равновесия:

Найдем количество PCl5, которое расходуется на образование PCl3 и Cl2 и их равновесные концентрации.

Из уравнения реакции:

Из 1 моль PCl5 образуется 1 моль PCl3

Из 0,54 моль PCl5 образуется x моль PCl3

Аналогично, из 1 моль PCl5 образуется 1 моль Cl2

из 0,54 моль PCl5 образуется у моль Cl2

Задача 11. Константа равновесия реакции: СОСl2(г) ↔ СО(г)+С12(г) равна 0,02. Исходная концентрация СОCl2 составила 1,3 моль/л. Рассчитайте равновесную концентрацию Сl2. Какую исходную концентрацию СОCl2 следует взять, чтобы увеличить выход хлора в 3 раза?

Решение.

Запишем выражение для константы равновесия:

Подставим значения в выражение для константы равновесия

Преобразим выражение в квадратное уравнение

х 2 + 0,02х – 0,026 = 0

Решая уравнение, находим

Увеличив выход хлора в 3 раза получим:

Исходная концентрация [СОСl2]исх2 при этом значении Cl2 равна:

[СОСl2]равн2 = 0,45·0,45/0,02 = 10,125 моль/л

[СОСl2]исх2 = 10,125 + 0,45 = 10,575 моль/л

Таким образом, чтобы увеличить выход хлора в 3 раза, исходная концентрация СОCl2 должна быть равна [СОСl2]исх2 = 10,575 моль/л

Задача 12. Равновесие в системе H2(г)+ I2(г)↔ 2HI(г) установилось при следующих концентрациях участников реакции: HI – 0,05 моль/л, водорода и иода – по 0,01 моль/л. Как изменятся концентрации водорода и иода при повышении концентрации HI до 0,08 моль/л?

Решение.

Найдем значение константы равновесия данной реакции:

К = 0,05 2 ̸ 0,01 · 0,01 = 25

При увеличении концентрации HI до 0,08 моль/л, равновесие сместится в сторону образования исходных веществ.

Из уравнения реакции видно, что образуется 2 моль HI, 1 моль H2 и 1 моль I2.

Обозначим новые равновесные концентрации через неизвестную х.

Найдем х с помощью выражения для константы равновесия:

К = (0,08 — 2х) 2 ̸ [(0,01 + х) · (0,01 + х)] = 25

Решая уравнения находим:

Задача 13. Для реакции: FeO(к) + CO(г)↔Fe(к) + CO2(г) константа равновесия при 1000 о С равна 0,5. Начальные концентрации СО и СО2 были соответственно равны 0,05 и 0,01 моль/л. Найдите их равновесные концентрации.

Решение.

Запишем выражение для константы равновесия:

Пусть равновесные концентрации равны:

Подставим значения в выражение для константы равновесия:

Решая уравнение, найдем х:

[СО]равн = 0,05 – 0,01 = 0,04 моль/л [СО2]равн = 0,01 + 0,01 = 0,02 моль/л


источники:

http://buzani.ru/zadachi/khimiya-glinka/1140-pravila-klechkovskogo-zadachi-175-182

http://zadachi-po-khimii.ru/obshaya-himiya/zadachi-2.html