Решение задачи коши системы дифференциальных уравнений

Задача Коши онлайн

Данная задача возникает при поиске частного решения дифференциального уравнения. Наш онлайн калькулятор, построенные на основе системы Wolfram Alpha, позволяет найти решение задачи Коши для различных типов дифференциальных уравнений. Чтобы начать работу, необходимо ввести данные своей задачи (дифференциальное уравнение и начальные условия) в калькулятор.

Найти решение задачи Коши для дифференциального уравнения:

при заданных начальных условиях:

При постановке задачи Коши, указываются так называемые начальные условия, позволяющие однозначно выделить искомое частное решение из общего. Эти условия включают в себя значения функции и всех её производных до включительно (где -порядок дифференциального уравнения), заданные в одной и той же точке .

Поясним вышесказанное на конкретном примере. Пусть нам требуется найти частное решение дифференциального уравнения:

удовлетворяющее начальным условиям:

Первым делом, используя различные методы (Бернули, вариации произвольной постоянной Лагранжа), сначала находим общее решение данного дифференциального уравнения:

Теперь, для поиска частного решения, нам необходимо использовать заданные начальные условия. Для этого, находим производную функции полученной ранее:

Далее, поставляем начальные условия в функцию и её производную :

Решая полученную систему уравнений получаем значения произвольных постоянных и :

Подставляем полученные результаты в общее решение дифференциального уравнения, в результате получаем искомое частное решение:

Другие полезные разделы:

Оставить свой комментарий:

Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме

Задачи с начальными условиями для систем обыкновенных дифференциальных уравнений

Рассмотрим задачу Коши для системы обыкновенных дифференциальных уравнений $$ \begin \tag <1>\frac &= f_i (t, u_1, u_2, \ldots, u_n), \quad t > 0\\ \tag <2>u_i(0) &= u_i^0, \quad i = 1, 2, \ldots, m. \end $$

Используя векторные обозначения, задачу (1), (2) можно записать как задачу Коши $$ \begin \tag <3>\frac> &= \pmb(t, \pmb), \quad t > 0, \\ \tag <4>\pmb(0) &= \pmb_0 \end $$ В задаче Коши необходимо по известному решению в точке \( t = 0 \) необходимо найти из уравнения (3) решение при других \( t \).

Численные методы решения задачи Коши

Существует большое количество методов численного решения задачи (3), (4). Вначале рассмотрим простейший явный метод Эйлера и его программную реализацию. Затем будут представлены методы Рунге—Кутта и многошаговые методы.

При построении численных алгоритмов будем считать, что решение этой дифференциальной задачи существует, оно единственно и обладает необходимыми свойствами гладкости.

Идея численных методов решения задачи (3), (4) состоит из четырех частей:

1. Вводится расчетная сетка по переменной \( t \) (время) из \( N_t + 1 \) точки \( t_0 \), \( t_1 \), \( \ldots \), \( t_ \). Нужно найти значения неизвестной функции \( \pmb \) в узлах сетки \( t_n \). Обозначим через \( \pmb^n \) приближенное значение \( \pmb(t_n) \).

2. Предполагаем, что дифференциальное уравнение выполнено в узлах сетки.

3. Аппроксимируем производные конечными разностями.

4. Формулируем алгоритм, который вычисляет новые значения \( \pmb^ \) на основе предыдущих вычисленных значений \( \pmb^k \), \( k 0 \) при \( \tau\to 0 \).

Явный метод Эйлера

Проиллюстрируем указанные шаги. Для начала введем расчетную сетку. Очень часто сетка является равномерной, т.е. имеет одинаковое расстояние между узлами \( t_n \) и \( t_ \): $$ \omega_\tau = \< t_n = n \tau, n = 0, 1, \ldots, N_t \>. $$

Затем, предполагаем, что уравнение выполнено в узлах сетки, т.е.: $$ \pmb^\prime (t_n) = \pmb(t_n, u(t_n)), \quad t_n \in \omega_\tau. $$

Заменяем производные конечными разностями. С этой целью, нам нужно знать конкретные формулы, как производные могут быть аппроксимированы конечными разностями. Простейший подход заключается в использовании определения производной: $$ \pmb^\prime(t) = \lim_ <\tau \to 0>\frac<\pmb(t+\tau) — \pmb(t)><\tau>. $$

В произвольном узле сетки \( t_n \) это определение можно переписать в виде: $$ \begin \pmb^\prime(t_n) = \lim_ <\tau \to 0>\frac<\pmb(t_n+\tau) — \pmb(t_n)><\tau>. \end $$ Вместо того, чтобы устремлять шаг сетки к нулю, мы можем использовать малый шаг \( \tau \), который даст численное приближение \( u^\prime(t_n) \): $$ \begin \pmb^\prime(t_n) \approx \frac<\pmb^ — \pmb^><\tau>. \end $$ Такая аппроксимация известна как разностная производная вперед и имеет первый порядок по \( \tau \), т.е. \( O(\tau) \). Теперь можно использовать аппроксимацию производной. Таким образом получим явный метод Эйлера: $$ \begin \tag <5>\frac<\pmb^ — \pmb^n> <\tau>= \pmb(t_n, \pmb^). \end $$

Четвертый шаг заключается в получении численного алгоритма. Из (5) следует, что мы должны знать значение \( y^n \) для того, чтобы решить уравнение (5) относительно \( y^ \) и получить формулу для нахождения приближенного значения искомой функции на следующем временном слое \( t_ \): $$ \begin \tag <6>\pmb^ = \pmb^n + \tau \pmb(t_n, \pmb^) \end $$

При условии, что у нас известно начальное значение \( \pmb^0 = \pmb_0 \), мы можем использовать (6) для нахождения решений на последующих временных слоях.

Программная реализация явного метода Эйлера

Выражение (6) может быть как скалярным так и векторным уравнением. И в скалярном и в векторном случае на языке Python его можно реализовать следующим образом

При решении системы (векторный случай), u[n] — одномерный массив numpy длины \( m+1 \) (\( m \) — размерность задачи), а функция F должна возвращать numpy -массив размерности \( m+1 \), t[n] — значение в момент времени \( t_n \).

Таким образом численное решение на отрезке \( [0, T] \) должно быть представлено двумерным массивом, инициализируемым нулями u = np.zeros((N_t+1, m+1)) . Первый индекс соответствует временному слою, а второй компоненте вектора решения на соответствующем временном слое. Использование только одного индекса, u[n] или, что то же самое, u[n, :] , соответствует всем компонентам вектора решения.

Функция euler решения системы уравнений реализована в файле euler.py:

Строка F_ = lambda . требует пояснений. Для пользователя, решающего систему ОДУ, удобно задавать функцию правой части в виде списка компонент. Можно, конечно, требовать чтобы пользователь возвращал из функции массив numpy , но очень легко осуществлять преобразование в самой функции решателе. Чтобы быть уверенным, что результат F будет нужным массивом, который можно использовать в векторных вычислениях, мы вводим новую функцию F_ , которая вызывает пользовательскую функцию F «прогоняет» результат через функцию assaray модуля numpy .

Неявный метод Эйлера

При построении неявного метода Эйлера значение функции \( F \) берется на новом временном слое, т.е. для решении задачи (5) используется следующий метод: $$ \begin \tag <7>\frac<\pmb^ — \pmb^n> <\tau>= \pmb(t_, \pmb^). \end $$

Таким образом для нахождения приближенного значения искомой функции на новом временном слое \( t_ \) нужно решить нелинейное уравнение относительно \( \pmb^ \): $$ \begin \tag <8>\pmb^ — \tau \pmb(t_, \pmb^) — y^n = 0. \end $$

Для решения уравнения (8) можно использовать, например, метод Ньютона.

Программная реализация неявного метода Эйлера

Функция backward_euler решения системы уравнений реализована в файле euler.py:

Отметим, что для нахождения значения u[n+1] используется функция fsolve модуля optimize библиотеки scipy . В качестве начального приближения для решения нелинейного уравнения используется значение искомой функции с предыдущего слоя u[n] .

Методы Рунге—Кутта

Одношаговый метод Рунге—Кутта в общем виде записывается следующим образом: $$ \begin \tag <9>\frac<\pmb^ — \pmb^n> <\tau>= \sum_^s b_i \pmb_i, \end $$ где $$ \begin \tag <10>\pmb_i = \pmb\left( t_n + c_i\tau, \pmb^n + \tau \sum_^s a_\pmb_j \right), \quad i = 1, 2, \ldots, s. \end $$ Формула (9) основана на \( s \) вычислениях функции \( \pmb \) и называется \( s \)-стадийной. Если \( a_ = 0 \) при \( j \geq i \) имеем явный метод Рунге—Кутта. Если \( a_ = 0 \) при \( j > i \) и \( a_ \ne 0 \), то \( \pmb_i \) определяется неявно из уравнения $$ \begin \tag <11>\pmb_i = \pmb\left( t_n + c_i\tau, \pmb^n + \tau \sum_^ a_\pmb_j + \tau a_ \pmb_i \right), \quad i = 1, 2, \ldots, s. \end $$ О таком методе Рунге—Кутта говорят как о диагонально-неявном.

Одним из наиболее распространенных является явный метод Рунге-Кутта четвертого порядка: $$ \begin \tag <12>\pmb_1 & = \pmb(t_n, \pmb^n), &\quad \pmb_2 &= \pmb\left( t_n + \frac<\tau><2>, \pmb^n + \tau \frac<\pmb_1> <2>\right),\\ \pmb_3 &= \pmb\left( t_n + \frac<\tau><2>, \pmb^n + \tau \frac<\pmb_2> <2>\right), &\quad \pmb_4 &= \pmb\left( t_n + \tau, \pmb^n + \tau \pmb_3 \right),\\ \frac<\pmb^ -\pmb^n> <\tau>&= \frac<1> <6>(\pmb_1 + 2\pmb_2 + 2\pmb_3 + \pmb_4) & & \end $$

Многошаговые методы

В методах Рунге—Кутта в вычислениях участвуют значения приближенного решения только в двух соседних узлах \( \pmb^n \) и \( \pmb^ \) — один шаг по переменной \( t \). Линейный \( m \)-шаговый разностный метод записывается в виде $$ \begin \tag <13>\frac<1> <\tau>\sum_^m a_i \pmb^ = \sum_^ b_i \pmb(t_, \pmb^), \quad n = m-1, m, \ldots \end $$ Вариант численного метода определяется заданием коэффициентов \( a_i \), \( b_i \), \( i = 0, 1, \ldots, m \), причем \( a_0 \ne 0 \). Для начала расчетов по рекуррентной формуле (13) необходимо задать \( m \) начальных значений \( \pmb^0 \), \( \pmb^1 \), \( \dots \), \( \pmb^ \) (например, можно использовать для их вычисления метод Эйлера).

Различные варианты многошаговых методов (методы Адамса) решения задачи с начальными условиями для систем обыкновенных дифференциальных уравнений могут быть получены на основе использования квадратурных формул для правой части равенства $$ \begin \tag <14>\pmb(t_) — \pmb(t_n) = \int_^> \pmb(t, \pmb) dt \end $$

Для получения неявного многошагового метода используем для подынтегральной функции интерполяционную формулу по значениям функции \( \pmb^ = \pmb(t_, \pmb^) \), \( \pmb^n \), \( \dots \), \( \pmb^ \), т.е. $$ \begin \tag <15>\frac<\pmb^ — \pmb^n> <\tau>= \sum_^ b_i \pmb(t_, \pmb^) \end $$

Для интерполяционного метода Адамса (15) наивысший порядок аппроксимации равен \( m+1 \).

Для построения явных многошаговых методов можно использовать процедуру экстраполяции подынтегральной функции в правой части (14). В этом случае приближение осуществляется по значениям \( \pmb^n \), \( \pmb^ \), \( \dots \), \( \pmb^ \) и поэтому $$ \begin \tag <16>\frac<\pmb^ — \pmb^n> <\tau>= \sum_^ b_i \pmb(t_, \pmb^) \end $$

Для экстраполяционного метода Адамса (16) погрешность аппроксимации имеет \( m \)-ый порядок.

На основе методов Адамса строятся и схемы предиктор–корректор. На этапе предиктор используется явный метод Адамса, на этапе корректора — аналог неявного метода Адамса. Например, при использовании методов третьего порядка аппроксимации в соответствии с (18) для предсказания решения положим $$ \frac<\pmb^ — \pmb^n> <\tau>= \frac<1> <12>(23 \pmb^ -16\pmb^ + 5\pmb^). $$ Для уточнеия решения (см. (17)) используется схема $$ \frac<\pmb^ — \pmb^n> <\tau>= \frac<1> <24>(9\pmb^ + 19\pmb^ — 5\pmb^ + \pmb^). $$ Аналогично строятся и другие классы многошаговых методов.

Жесткие системы ОДУ

При численном решении задачи Коши для систем обыкновенных дифференциальных уравнений (3), (4) могут возникнуть дополнительные трудности, порожденные жесткостью системы. Локальные особенности поведения решения в точке \( u = w \) передаются линейной системой $$ \begin \frac

= \sum_^ \frac<\partial f_i> <\partial u_j>(t, w) v + \bar(t), \quad t > 0. \end $$

Пусть \( \lambda_i(t) \), \( i = 1, 2, \ldots, m \) — собственные числа матрицы $$ \begin A(t) = \< a_(t) \>, \quad a_(t) = \frac<\partial f_i><\partial u_j>(t, w). \end $$ Система уравнений (3) является жесткой, если число $$ \begin S(t) = \frac <\max_<1 \leq i \leq m>|Re \lambda_i(t)|> <\min_<1 \leq i \leq m>|Re \lambda_i(t)|> \end $$ велико. Это означает, что в решении присутствуют составляющие с сильно различающимися масштабами изменения по переменной \( t \).

Для численное решения жестких задач используются вычислительные алгоритмы, которые имеют повышенный запас устойчивости. Необходимо ориентироваться на использование \( A \)-устойчивых или \( A(\alpha) \)-устойчивых методов.

Метод называется \( A \)-устойчивым, если при решении задачи Коши для системы (3) область его устойчивости содержит угол $$ \begin |\arg(-\mu)| —>

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Применения операционного исчисления

Решение задачи Коши для ОДУ с постоянными коэффициентами

Пример 1.

Решить однородное дифференциальное уравнение с постоянными коэффициентами. \begin &x»’+2x»+5x’=0,\\ &x(0)=-1, \,\, x'(0)=2, \,\, x»(0)=0. \end

Записываем изображения для левой и правой частей дифференциального уравнения. Для левой части используем теорему о дифференцировании оригинала: \begin &x(t) \risingdotseq X(p),\\ &x'(t) \risingdotseq pX(p)-x(0)=pX(p)+1,\\ &x»(t) \risingdotseq p^2X(p)-px(0)-x'(0)=p^2X(p)+p-2,\\ &x»'(t) \risingdotseq p^3X(p)-p^2x(0)-px'(0)-x»(0)=p^3X(p)+p^2-2p-0. \end Справа стоит $0$, изображение для него тоже $0$.

Запишем уравнение с изображениями (операторное уравнение). Оно уже будет алгебраическим, а не дифференциальным: \begin p^3X(p)+p^2-2p+2(p^2X(p)+p-2)+5(pX(p)+1)=0. \end И найдем из него неизвестное $X(p)$: \begin X(p)=-\frac. \end Используя теоремы, приемы, таблицы операционного исчисления получим оригинал: \begin X(p) \risingdotseq x(t)=-\displaystyle\frac15-\displaystyle\frac45 e^<-t>\mbox\,2t+\displaystyle\frac35e^<-t>\mbox\,2t. \end

Пример 2.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. \begin x»-2x’-3x=e^<3t>,\\ x(0)=x'(0)=0. \end

Записываем изображения для левой и правой частей дифференциального уравнения. Для левой части используем теорему о дифференцировании оригинала: \begin &x(t) \risingdotseq X(p),\\ &x'(t) \risingdotseq pX(p)-x(0)=pX(p),\\ &x»(t) \risingdotseq p^2X(p)-px(0)-x'(0)=p^2X(p), \end Справа стоит $e^<3t>$, изображение равно $\displaystyle\frac<1>$.

Запишем операторное уравнение: \begin (p^2-2p-3)X(p)=\frac<1>. \end Находим $X(p)$: \begin X(p)=\frac<1><(p-3)^2(p+1)>. \end Используя, например, вторую теорему разложения, получим оригинал: \begin X(p) \risingdotseq \displaystyle\frac14\,te^<3t>-\displaystyle\frac<1><16>\,e^<3t>+\displaystyle\frac<1><16>\,e^<-t>. \end

Пример 3.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. \begin x»+3x’=\mbox\,2t,\\ x(0)=2, \,\, x'(0)=0. \end

Пример 4.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. \begin x»+x’=e^t,\\ x(1)=1, \,\, x'(1)=2. \end Так как начальные условия даны не при $t=0$, сразу применить теорему о дифференцировании оригинала мы не можем. Поставим вспомогательную задачу для функции $y(t)=x(t+1)$: \begin y»+y’=e^,\\ y(0)=1, \,\, y'(0)=2. \end Записываем операторное уравнение \begin (p^2Y(p)-p-2)+(pY(p)-1)=\displaystyle\frac. \end

Решаем полученное уравение: \begin Y(p)=\displaystyle\frac<(p-1)(p^2+p)>+\displaystyle\frac. \end \begin y(t)=\displaystyle\frac12e^+\left(\displaystyle\frac<2>-2\right)e^<-t>+(3-e). \end Со сдвигом на $1$ находим решение исходной задачи: \begin x(t)=y(t-1)=\displaystyle\frac12e^+\left(\displaystyle\frac<2>-2\right)e^<-t+1>+(3-e). \end

Решение задачи Коши для систем линейных ДУ

Пример 5.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. \begin \left\ < \begin&x’ = 2x+8, \\ &y’ = x+4y+1, \\ &x(0)=1,\, y(0)=0. \\ \end \right. \end

Запишем изображения: \begin \begin x(t) \risingdotseq X(p), & x'(t) \risingdotseq p\,X(p)-1, \\ y(t) \risingdotseq Y(p), & y'(t) \risingdotseq p\,Y(p). \end \end \begin 8 \risingdotseq \displaystyle\frac<8>

, \,\, 1 \risingdotseq \displaystyle\frac<1>

. \end

Операторная система уравнений принимает вид: \begin \left\ < \beginpX(p)-1 &= 2X(p)+\displaystyle\frac<8>

, \\ pY(p) &= X(p)+4Y(p)+\displaystyle\frac<1>

.\\ \end \right. \end

Решаем систему, находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: \begin X(p)=\displaystyle\frac\risingdotseq x(t)=-4+5e^<2t>. \end \begin Y(p)=\displaystyle\frac<2p+6>\risingdotseq y(t)=\displaystyle\frac34-\displaystyle\frac52\,e^<2t>+\displaystyle\frac74\,e^<4t>. \end

Пример 6.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. \begin \left\ < \begin&x’ = 2x+8y, \\ &y’ = x+4y+1, \\ &x(0)=1,\, y(0)=0.\\ \end \right. \end

\begin \begin x(t) \risingdotseq X(p), & x'(t) \risingdotseq p\,X(p)-1, \\ y(t) \risingdotseq Y(p), & y'(t) \risingdotseq p\,Y(p),\\ 1 \risingdotseq \displaystyle\frac<1>

. &\\ \end \end

Операторная система уравнений принимает вид: \begin \left\ < \beginpX(p)-1 &= 2X(p)+8Y(p), \\ pY(p) &= X(p)+4Y(p)+\displaystyle\frac<1>

.\\ \end \right. \end

Решаем систему находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: \begin X(p)=\displaystyle\frac\risingdotseq x(t)=\frac49-\frac43\,t+\frac59\,e^<6t>. \end \begin Y(p)=\displaystyle\frac<2(p-1)>\risingdotseq y(t)=-\displaystyle\frac<5><18>+\displaystyle\frac13\,t+\displaystyle\frac<5><18>\,e^<6t>. \end

Пример 7.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. \begin \left\ < \begin&x’-2x-4y = \mbox\, t, \\ &y’+x+2y = \mbox\,t, \\ &x(0)=0,\, y(0)=0.\\ \end \right. \end

Операторная система уравнений принимает вид: \begin \left\ < \begin(p-2)X(p)-4Y(p) &= \frac

, \\ X(p)+(p+2)Y(p) &= \frac<1>.\\ \end \right. \end

Решаем систему находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: \begin X(p)=\displaystyle\frac<2>

+\displaystyle\frac<4>-\displaystyle\frac<2p+3>\risingdotseq x(t)=2+4t-2\,\mbox\,t-3\,\mbox\,t. \end \begin Y(p)=-\displaystyle\frac<2>+\displaystyle\frac<2>\risingdotseq y(t)=-2t+2\,\mbox\,t. \end

Решение ОДУ с помощью интеграла Дюамеля

Введем обозначения:
Уравнение: $x^<(n)>(t)+a_1\,x^<(n-1)>(t)+\ldots+a_n\,x(t)=f(t)$.
Начальные условия: $x(0)=x'(0)=\ldots=x^<(n)>=0$.
Неизвестная функция $x(t)$, имеющая изображение $X(p)$.
Сложная функция в правой части $f(t)$, имеющая изображение $F(p)$.

Запишем алгоритм решения.
1. Решается вспомогательное уравнение $$ y^<(n)>(t)+a_1\,y^<(n-1)>(t)+\ldots+a_n\,y(t)=1.$$ С учетом начальных условий левая и правые части уравнений будут иметь изображения: \begin \begin y(t) & \risingdotseq Y(p),\\ y'(t) & \risingdotseq p\,Y(p),\\ y»(t)& \risingdotseq p^2Y(p),\\ &\cdots\\ y^<(n)>(t)& \risingdotseq p^nY(p). \end \end Вспомогательное операторное уравнение запишем в виде: \begin Y(p)\cdot h(p) = \frac<1>

,\\ h(p)=p^n+a_1p^+\ldots+a_n. \end $$Y(p) \risingdotseq y(t).$$

2. Решается исходное уравнение. Левая часть уравнения совпадает с левой частью вспомогательного, поэтому операторное уравнение записывается так: $$ X(p)\cdot h(p) = F(p),$$ при этом $h(p)$, используя решение вспомогательного уравнения, можно записать в виде \begin h(p)=\frac<1>. \end Тогда $$ X(p) = F(p)\,pY(p).$$ Для нахождения $x(t)$ необходимо найти оригинал для $pY(p)F(p)$, то есть вычислить интеграл из формулы Дюамеля: $$ p F(p) Y(p) \risingdotseq y(0)\cdot f(t)+\int\limits_0^t f(\tau)\,y'(t-\tau)\,d\tau,$$ где $y(t)$ — уже найденное решение вспомогательного уравнения.

Пример 8.

Решить задачу Коши с помощью интеграла Дюамеля. \begin x»+2x’=\frac<1><1+e^<2t>>, \,\, x(0)=0, \,\, x'(0)=0. \end Решаем через интеграл Дюамеля в два этапа, как было описано выше.

2. Исходное уравнение в операторном виде: \begin (p^2+2p)X(p)=F(p). \end Правая часть этого уравнения такая же, как и для вспомогательного. Левую часть $\frac<1><1+e^<2t>>$ обозначим $f(t)$, ее изображение $F(p)$. Тогда \begin X(p)=\frac. \end Решая вспомогательное уравнение, мы находили: \begin (p^2+2p)Y(p)=\frac<1>

\,\, \Rightarrow \,\, p^2+2p=\frac<1>. \end Тогда \begin X(p)=\frac<\frac<1>>=pF(p)Y(p). \end

Теперь по формуле Дюамеля получаем: \begin X(p)=p F(p) Y(p) \risingdotseq x(t)=y(0)\cdot f(t)+\int\limits_0^t f(\tau)\,y'(t-\tau)\,d\tau, \end где $y(t)$ — уже найденное решение вспомогательного уравнения: \begin \begin & y(t)=-\frac14+\frac12t+\frac14 e^<-2t>,\\ & y(0)=0,\\ & y'(t-\tau)=\frac12-\frac12e^<-2(t-\tau)>. \end \end

Решение задачи Коши с правой частью, содержащей функцию Хэвисайда

Пример 9

Решить задачу Коши, когда правая часть дифференциального уравнения содержит составную функцию (выражаемую через функцию Хэвисайда). \begin \left\ < \begin&x»+x=\eta(t)-\eta(t-2), \\ &x(0)=0,\\ &x'(0)=0. \end \right. \end

Запишем изображения для левой и правой частей уравнения: \begin &x»+x \risingdotseq p^2\,X(p)+X(p),\\ &\eta(t)-\eta(t-2) \risingdotseq \frac<1>

-\frac>

. \end Для правой части, содержащей функцию Хэвисайда, воспользовались теоремой запаздывания.

Находим изображение для $\displaystyle\frac<1>$ с помощью теоремы об интегрировании оригинала: \begin &\frac<1>\risingdotseq \mbox\,t \,\, \Rightarrow\\ &\frac<1>\risingdotseq \int\limits_0^t\,\mbox\,\tau\,d\tau=-\mbox\,t+1. \end Тогда изображение для $\displaystyle\frac>$ по теореме запаздывания будет равно: \begin \frac>\risingdotseq (-\mbox\,(t-2)+1)\eta(t-2). \end

Решение заданного уравнения: \begin x(t)= (1-\mbox\,t)\eta(t)-(1-\mbox\,(t-2))\eta(t-2). \end

Пример 10

Решить задачу Коши, когда правая часть дифференциального уравнения задана графически (и выражается через функцию Хэвисайда). \begin \left\ < \begin&x»+4x=f(t). \\ &x(0)=0,\\ &x'(0)=0. \end \right. \end

Запишем аналитическое выражение для $f(t)$ с помощью функции Хэвисайда и найдем ее изображение: \begin &f(t)=2t\eta(t)-4(t-1)\eta(t-1)+2(t-2)\eta(t-2),\\ &F(p)=\frac<2>(1-2e^<-p>+e^<-2p>). \end Операторное уравнение имеет вид: \begin &X(p)(p^2+4)=\frac<2>(1-2e^<-p>+e^<-2p>)\,\, \Rightarrow\\ &X(p)=\frac<2>(1-2e^<-p>+e^<-2p>). \end

Для первого слагаемого найдем оригинал, разложив дробь на сумму простейших: \begin \frac<2>=\frac<1><2p^2>-\frac<2> <4(p^2+4)>\risingdotseq \frac12t-\frac14\,\mbox\,2t. \end Для остальных слагаемых воспользуемся теоремой запаздывания: \begin X(p)\risingdotseq x(t)= \frac12\left(t-\frac12\,\mbox\,2t\right)\eta(t)-\\ -\left((t-1)-\frac12\,\mbox\,2(t-1)\right)\eta(t-1)+\\ +\frac12\left((t-2)-\frac12\,\mbox\,2(t-2)\right)\eta(t-2). \end

Решение задачи Коши с периодической правой частью

Периодическую правую часть тоже очень удобно записывать с помощью функции Хэвисайда.

Пусть $f(t)$ — периодическая с периодом $T$ функция-оригинал. Обозначим через $f_0(t)$ функцию: \begin f_0(t)=\begin f(t),& 0 oplaplace/seminar5_2.txt · Последние изменения: 2021/05/28 18:23 — nvr


источники:

http://slemeshevsky.github.io/num-mmf/ode/html/._ode-FlatUI001.html

http://vmath.ru/vf5/oplaplace/seminar5_2