Решения дифференциальных уравнений конвективного теплообмена

Система дифференциальных уравнений конвективного теплообмена

Для полного аналитического описания процесса конвективного теплообмена необходимо задать систему дифференциальных уравнений, выражающих законы сохранения массы (уравнение неразрывности, сплошности), импульса (уравнение движения), энергии (уравнение энергии), соответствующие специальные законы импульса и теплоты, зависимость физических свойств теплоносителя от температуры и давления и, наконец, условия однозначности, включающие начальные и граничные условия. В частности, для потока несжимаемой жидкости при условии, что вязкая диссипация (рассеяние) энергии пренебрежимо мала, эти уравнения имеют вид:

уравнение неразрывности
(12)

уравнение движения
(13)уравнение энергии
(14)

где через xj обозначены декартовы оси координат; — время; cp, ρ и μ — удельная теплоемкость, плотность и динамическая вязкость жидкости; ωi, ωj — проекции скорости на соответствующие оси координат; p — давление; T — температура; Fi — массовая сила; qv — мощность внутренних источников энергии ( теплоты).

В уравнениях (13) и (14) в качестве специальных законов переноса используются закон трения Ньютона

(15)

и закон теплопроводности Фурье

(16)

Система дифференциальных уравнений (12)-(14) справедлива для турбулентных течений только при условии, что под параметрами потока в этих уравнениях подразумеваются их актуальные (мгновенные) значения. Если в (12)-(14) ввести условие ∂/∂ =0, получится соответствующая система уравнений для стационарных процессов движения жидкости и конвективного теплообмена, справедливая только для ламинарных потоков. В турбулентных потоках значения скорости, давления и температуры непрерывно изменяются случайным образом, пульсируют. Для них стационарным может быть только осредненное во времени движение. Чтобы выразить уравнения и энергии турбулентного потока через осредненные параметры, необходимо кроме молекулярного переноса учесть также составляющие переноса импульса и энергии, обусловленные механизмом молярного перемещения среды в потоке. Через осредненные характеристики турбулентного потока уравнения (12)-(14) могут быть записаны в виде

(17)

(18)

(19)

Члены и в уравнениях (18) и (19) представляют собой дополнительное напряжение и тепловой поток соответственно, возникающие вследствие турбулентного перемещения среды. Следовательно, полое касательное напряжение и плотность теплового потока при турбулентном течении могут быть записаны как

(20)

(21)

соответственно турбулентные динамическая вязкость и теплопроводность; ωi‘, ωj, и T’ — локальные пульсации скорости и температуры потока.

Коэффициенты μт и λт в отличие от µ и λ не являются физическими свойствами среды. Непосредственно на твердой поверхности теплообмена μт=0 и λт=0.

Турбулентные составляющие напряжения и теплового потока определяют с помощью методов статической теории турбулентности, на основе полуэмпирических моделей турбулентного переноса или, наконец, экспериментально.

Решение уравнений конвективного теплообмена при соответствующих условиях однозначности позволяет позволяет определить температурное поле в потоке, а затем вычислить и остальные искомые значения qc, , . Точное решение уравнений движения и энергии, составляющих систему нелинейных дифференциальных уравнений в частных производных, возможно лишь в ограниченном числе простейших случаев.

Дифференциальные уравнения конвективного теплообмена. Основные понятия конвективного теплообмена

Основные понятия конвективного теплообмена

Понятие конвективного теплообмена охватывает процесс теплообмена при движении жидкости или газа. При этом перенос теплоты осуществляется одновременно конвекцией и теплопроводностью.

Если в единицу времени через единицу контрольной поверхности нормально к ней проходит масса жидкости , кг/(м 2 ·с), где – скорость, – плотность жидкости, то вместе с ней переносится теплота, Вт/м 2 :

Конвекция теплоты всегда сопровождается теплопроводностью, т.к. при движении жидкости или газа происходит сопри­косновение отдельных частиц, имеющих различные температуры. В результате конвективный теплообмен описывают уравнением

При расчетах конвективного теплообмена между текущей жидкостью и твёрдой стенкой используют закон Ньютона – Рихмана

Коэффициент теплоотдачи α зависит от большого количества факто­ров. В общем случае α является функцией

— формы и размеров тела,

— скорости и температуры жидкости,

— физических па­раметров жидкости,

Чтобы привести жидкость в движение, к ней необходимо при­ложить силу. Силы, действующие на какой-либо элемент жидкости, можно разделить на массовые (или объемные) и поверхностные.

Массовыми называют силы, приложенные ко всем частицам жид­кости и обусловленные внешними силовыми полями (например, грави­тационным или электрическим).

Поверхностные силы возникают вслед­ствие действия окружающей жидкости или твердых тел; они приложены к поверхности контрольного объема жидкости. Такими силами являют­ся силы внешнего давления и силы трения.

Различают свободную и вынужденную конвекцию.

В пер­вом случае жидкость с неодно­родным распределением температуры, и, как следствие, с неоднород­ным распределением плотности, находится в поле земного тяготения. Поэтому в ней может возникнуть свободное гравитационное движение.

Вынужденное движение объема жидкости про­исходит под действием внешних поверхностных сил, приложенных на его границах, за счет предварительно сообщенной кинетической энер­гии (например, за счет работы насоса, вентилятора, ветра).

Вынужденное движение в общем случае может сопровождаться свободным движением. Относительное влияние последнего тем больше, чем больше разница температур отдельных частиц среды и чем меньше скорость вынужденного движения.

Дифференциальные уравнения конвективного теплообмена

Из уравнения следует, что плотность теплового потока в любой точке жидкости для каждого момента времени однозначно определяется, если известны поля температур, удельной энтальпии и скорости.

Связь между температурой и энтальпией может быть установлена следующим образом. Для реальной жидкости , и согласно понятию о полном дифференциале

Отсюда

Для многих задач в предположении о несжимаемости жидкости (ρ=const) с достаточной степенью точности можно принять , т.е. пользоваться соотношением, справедливым для термодинамически идеального газа и .

Выведем диф­ференциальное уравнение, описывающее тем­пературное поле в движущейся жидкости.

При выводе будем полагать, что

— её физические параметры постоянны,

— энергия деформации мала по срав­нению с изменением внутренней энергии.

Выделим в потоке жидкости неподвиж­ный относительно координатной системы эле­ментарный параллелепипед с реб­рами dx, dy и dz.

Через грани параллелепипе­да теплота переносится теплопроводностью и конвекцией; в общем случае в рассматривае­мом объеме может выделяться теплота внутренними источниками.

Вывод уравнения энергии, соответствующего принятым здесь усло­виям, был получен ранее:

,

Проекции плотности теплового потока на координатные оси Ох, Оу и Оz равны

, и

Подставляя значения qx,qy и qz в уравнение Фурье, можно получить

Для несжимаемых жидкостей (ρ=const) из закона сохранения массы следует:

Тогда,

или, если ,

Последнее уравнение является уравнением энергии, описывающим распределение температур внутри движущейся жидкости.

Если , уравнение энергии переходит в уравнение теплопроводности.

Как следует из уравнения энергии, темпера­турное поле в движущейся жидкости зависит от составляющих скорости .

Чтобы сде­лать систему уравнений замкнутой, необходимо добавить уравнения, которые бы описывали из­менение скорости во времени и пространстве. Такими уравнениями являются дифференциаль­ные уравнения движения.

Уравнение движения вдоль оси Ох

.

Описание движения жидкости усложняется, если скорость изменя­ется по трем направлениям.

для оси Ох

для оси Оу

для оси Оz

В общем случае составляющие скорости изменяются во времени и в пространстве. Член, стоящий в левой части уравнений, представляет собой полную производную от скорости по времени.

На основании понятия о полной (субстанциальной) производной для оси Ох имеем

Аналогичные уравнения можно записать и для осей Оу, Оz.

Используя векторную форму записи:

Уравнение движения получено без учета зависимости физи­ческих параметров жидкости от температуры. В частности, не учтена зависимость плотности от температуры.

В то же время свободное дви­жение жидкости определяется разностью плотностей холодных и нагре­тых частиц жидкости.

Приближенный учет переменности плотности возможен с введением температурного коэффициента объемного расши­рения β.

Т.к. в уравнение движения, помимо входит еще неизвестная величина р, то система уравнений не является замкнутой. Необходимо добавить еще одно уравнение – уравнение сплошности (неразрывности).

Выде­лим в потоке движущейся жидкости непо­движный элементарный параллелепипед со сторонами dx, dy и dz и подсчитаем массу жидкости, протекающей через него в на­правлении осей Ох, Оу и Oz за время .

В направлении оси Ох в параллелепи­пед втекает масса жидкости

Величина представляет собой ко­личество массы, протекающей в единицу времени через единицу поперечного сече­ния. Из противоположной грани вытекает масса

Ограничиваясь первыми двумя членами разложения в ряд, полу­чаем, что масса dMx+dx, вытекающая из элементарного параллелепида в направлении оси Ох

Излишек массы жидкости, вытекающий из элементарного объема в направлении оси Ох

Аналогичным образом можно получить уравнения для направлений по осям Оу и Оz.

Полный избыток мас­сы жидкости, вытекающей из элементарного объема в направлении всех трех осей обусловливается измене­нием плотности жидкости в объеме и равен изменению массы дан­ного объема во времени .

Произведя сокращение на и и перенеся все члены в левую часть равенства, окончательно получим дифференциальное уравнение сплошности для сжимаемых жидкостей

Для несжимаемых жидкостей, полагая ρ=const, получаем

Уравнение сплошности является уравнением сохранения массы.

|следующая лекция ==>
Пути интенсификации теплопередачи|Критерии подобия и уравнения подобия

Дата добавления: 2016-02-09 ; просмотров: 2745 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Приведение дифференциальных уравнений конвективного теплообмена и условий однозначности к безразмерному виду

Приведение дифференциальных уравнений конвективного теплообмена и условий однозначности к безразмерному виду

  • Редукция дифференциальных уравнений конвекции Передача тепла к безразмерным формам и ясным условиям Чтобы применить на практике теорию подобия в случае конвективного теплообмена, описываемого системой дифференциальных уравнений и условиями единственности с большим числом переменных, необходимо сначала узнать число подобия, содержащееся в уравнении подобия. , Эти

системы дифференциальных уравнений, включая дифференциальные уравнения теплопередачи между твердыми телами в движущейся жидкости и внешней средой V, энергии или теплопроводности, движения вязких несжимаемых жидкостей (или уравнений Навье-Стокса) и непрерывности Числа, раскрывающие структуру. Хотя показанная система уравнений обеспечивает полное

математическое описание явления теплопередачи с условием единственности r, сталкивается с большими трудностями. Поскольку физические величины измерения могут быть связаны с безразмерными I-комплексами, число комплексов меньше, чем количество величин,

аналитическое решение этой системы Людмила Фирмаль

составляющих эти комплексы. Это значительно упрощает исследование физических процессов. Полученный безразмерный комплекс можно рассматривать как новую переменную c. Поэтому для получения числа сходств используется следующая формула: Уравнение движения вязкой жидкости Навье-Стокса (Dwx. „Dwx. Dwx. Dwx \ + w ‘- * r + 94rr f a * r v dx * n do * ^ dz * g ‘ (Для сокращения

вычислений уравнение Навье-Стокса дано только для осей ); Уравнение неразрывности жидкости _ | —_ Q •. (2b.13) И дг Уравнение энергии жидкости dt, а /. /. дт / дх, д4. дх \ / ог … Уравнение теплопередачи на границе между окружающей средой и твердым телом aAt- — X (dt / dx) CT. , (26-15) Напишите уравнения для двух похожих систем. «Процесс, который происходит в первой системе, описывается уравнениями (26-12) — (26-15). Процесс, который

происходит во второй системе, описывается тем же уравнением, что и процесс в первой системе. Но похожие значения имеют индекс (‘). / dsh’kh ;, dw’x, dwx \ дх \ дх’2 до’2 дз’1) dw ‘dw’ dw ‘ a / ‘,: / dt’, / dt ‘,, dt’ (a2 / ‘. dCh’.dCh’ от , / Dt, dt ‘, dt’ (a2 / ‘, dc’, dc ‘\ /P|L.oh ‘At’ = -X ‘(dt’ / dx ‘) CT (26-19) Исходя из сходства процессов, одинаковые значения в обеих системах попарно связаны одинаковыми коэффициентами преобразования. x’lx = yChu = rChr = C <\ m7m = Cx \ w’x / wx = w’y / wy = w’z / wz = Сш \ р ‘/ р =

  • Ср; g’lg = Cg-p’ / p = Сp] = C ^; a ‘/ a = Ca; M’lM = t’lt = Ct \ VA = Cx; ct’ / a = Ca. Выразите все переменные в уравнении (26-10) — (26-19) секунд • Система с коэффициентами пересчета, аналогичными первым системным переменным: CP Cu> l ^ x. CP C%> л /. , Dw St dt C / \ x dx y du 1 dg P * | C / ^ V ^ С? «Гr-Cr> -C’L ^ Группировка терминов в этих отношениях на две части: = Или кт с, с, = 1; = 1. C? P-g g или c, см cg Ci Ci C; или вода s, «C / ‘ср. C» CQ Cw или CP N Ci s? «» В соотношениях (26-25) — (26-28) вместо таких коэффициентов преобразования

сгруппируйте эти значения по индексу, чтобы получить следующий номер сходства. Но — то же самое; • (26-29) Fr = то же самое; (26-30) w2 ‘4 * и = — £ — = — ^ — = то же самое; (26-31). Low rou2 Re — ^ — = — ^ = То же самое, (26-32) V. v Где Ho — число гидродинамических синхроний и характеризует скорость изменения поля скоростей движущейся жидкости. Fr — число Фруда, которое определяет отношение инерции к гравитации. Она является числом Эйлера, которое характеризует

отношение силы давления к силе инерции. Re — число Рейнольдса. Это отношение силы инерции к силе вязкости и определяет характер потока жидкости. сходства двух или более систем. Для похожих точек они имеют одинаковое значение. Из уравнений энергии (26-14) и (26-22) мы имеем следующее соотношение: Или • (26-33) ct cf c? • CULCL = C ± CL) или С * СГ = к (2б.34) Cl Cl Ca Подстановка

Числа подобия Ho, Fr, Eu и Re используются для изучения гидродинамического Людмила Фирмаль

этих значений вместо аналогичных коэффициентов преобразования и деление переменной дает следующий номер подобия: То же, что и выше ;-( 26-35) rol- * , Pe = —- идем, • (26-36) Но где Fo — это число Фурье, мера тепловой одновременности, которая характеризует взаимосвязь между скоростью изменения температурного поля, физическими параметрами и размером тела. Re — число Пекле, число подобия

конвективного теплообмена. Подставляя значение, равное -A / sr, в число Fe вместо коэффициента термодиффузии a и умножая числитель и знаменатель на избыточную температуру ft, Pe = т.е. ■ (л / *) * Число подобия характеризует тепло, передаваемое конвекцией, а знаменатель характеризует тепло, передаваемое теплопроводностью. Из уравнений теплопередачи (26-15) и (26-23) получается следующее соотношение: _ _ C, C, C s, ct = или -4- ^ = 1. , (26-37) H ck После

преобразования и разделения переменных, Nu = — = то же самое, — (26-38) Nu — это число Нуссельта, которое характеризует конвективный теплообмен между жидкой и твердой поверхностями. Число Нуссельта определяется тем же значением, что и число Био, но число Nu содержит теплопроводность теплоносителя, а число Bi содержит теплопроводность твердого тела. Числа Fo, Pe и Nu используются для определения термического сходства двух или более систем. Для похожих точек они имеют одинаковое значение. Разделив число Pe

на число Re, получим новое число Pr. Pr = Pe / Re = v / a, (26-39) Где Pr — число Прандтля, определяющее физические свойства жидкости. Число Pe может быть выражено как произведение чисел Re и Pr: Pe = Re. Pr = (wl / ) (v / a) = wl / a. (26-40) При изучении теплообмена в свободном потоке жидкости учитывается число Фруда, но значение скорости w, которое очень трудно измерить, должно быть исключено. Для этого умножьте Fr на Re2. Ga = Fr • Re2 = идерри, (26-41) Где -Ga — число Галилея, которое характеризует отношение силы тяжести к

молекулярному трению. • Умножьте полученное число Ga на симплекс (p-p0) / po. Где p и p0 ‘- плотность жидкости в двух точках и получают новое число. A L AR • & 1 * DR. / ОС ЛОХ Ar является архимедовым числом, определяющим условия свободного движения среды. Симплекс (p-Po) / p <> заменяется на

расширения) среды (когда газ р = 1/7). В этом случае номер Архимеда меняется на новый номер. Cr = L ^, (26-43) Здесь Gr — число Грасгофа, которое характеризует отношение подъемной силы, вызванной разницей между плотностью жидкости и силой молекулярного трения. Числа подобия Fr, Ga, Ar и Gr идентичны. Это те же четыре типа.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://helpiks.org/6-87633.html

http://lfirmal.com/privedenie-differencialnyh-uravnenij-konvektivnogo-teploobmena-i-uslovij-odnoznachnosti-k-bezrazmernomu-vidu/