Решения краевой задачи для уравнения лапласа

Краевые задачи для уравнения Лапласа

Автор работы: Пользователь скрыл имя, 17 Ноября 2011 в 18:30, курсовая работа

Краткое описание

Рассмотрение понятия краевой задачи для уравнений эллиптического типа. Как частный случай — уравнение Лапласа (простейшее уравнение эллиптического типа). Для уравнения Лапласа краевая задача I рода — задача Дирихле; краевая задача II рода — задача Неймана. Краевое условие III рода — смешанная краевая задача. Рассматриваются также задача Дирихле в пространств/на плоскости, решение задачи Дирихле (первой краевой задачи) для уравнения Лапласа в круге, решение задачи Неймана (второй краевой задачи) для уравнения Лапласа в круге, решение задачи Дирихле для кольца.

Содержание

Введение
Понятие краевой задачи для обыкновенного дифференциального уравнения. Краевые задачи для уравнений эллиптического типа
Уравнение Лапласа и понятие гармонической функции.
Корректность краевой задачи.
Первая и вторая краевые задачи для уравнения Лапласа.
Задача Дирихле в пространстве
Задача Дирихле на плоскости
Задача Неймана
Уравнение Лапласа в цилиндрических координатах.
Решение задачи Дирихле (первой краевой задачи) для уравнения Лапласа в круге.
Решение задачи Неймана для уравнения Лапласа в круге.
Примеры.
Решение задачи Дирихле для кольца.

Вложенные файлы: 1 файл

Понятие краевой з.doc

ПЕНЗЕНСКИЙ ПЕДАГОГИЧЕСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ В. Г. БЕЛИНСКОГО

Кафедра «Математического анализа»

«Краевые задачи для уравнения Лапласа»

  1. Введение
  2. Понятие краевой задачи для обыкновенного дифференциального уравнения. Краевые задачи для уравнений эллиптического типа
    1. Уравнение Лапласа и понятие гармонической функции.
    2. Корректность краевой задачи.
  3. Первая и вторая краевые задачи для уравнения Лапласа.
    1. Задача Дирихле в пространстве
    2. Задача Дирихле на плоскости
    3. Задача Неймана
  4. Уравнение Лапласа в цилиндрических координатах.
    1. Решение задачи Дирихле (первой краевой задачи) для уравнения Лапласа в круге.
    2. Решение задачи Неймана для уравнения Лапласа в круге.
    3. Примеры.
    4. Решение задачи Дирихле для кольца.

Уравнениями математической физики называются уравнения, описывающие математические модели физических явлений. Среди них процессы, изучаемые в теории упругости, гидродинамике, электродинамике, квантовой физике и т. д. Во многих случаях их изучение приводит к уравнениям с частными производными второго порядка.

Дифференциальным уравнением с частными производными (в частных производных) называется уравнение, связывающее функцию , независимые переменные и частные производные от функции , то есть соотношение

где известная функция и .

При этом предполагается, что в области, где рассматривается данное уравнение, функция имеет частные производные порядка

Порядок старшей из частных производных, входящих в уравнение (1), называется порядком этого уравнения. Например, уравнение второго порядка для функции, имеющей непрерывные частные производные второго порядка, в общем случае может быть записано в виде

Уравнение (1) называется линейным, если данное уравнение линейно относительно этой функции и ее производных.

Решением уравнения (1) называется всякая функция , которая, будучи подставлена в указанное уравнение, обращает его в тождество по всем переменным.

Для полного описания физических процессов помимо уравнений необходимо указать некоторые дополнительные условия. В частности, может быть задана картина процесса в фиксированный момент времени, т.е. начальные условия. Кроме того, задают значения изучаемых величин на границе рассматриваемой области – граничные (или краевые) условия. Дифференциальное уравнение вместе с соответствующими краевыми (и начальными) условиями называется краевой задачей математической физики.

К основным уравнениям математической физики относятся следующие дифференциальные уравнения в частных производных второго порядка.

Это уравнение является простейшим уравнением гиперболического типа. К его исследованию приводит изучение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводах и т.д.

    1. Уравнение теплопроводности, или уравнение Фурье:

Это уравнение является простейшим уравнением параболического типа. К его исследованию приводит рассмотрение процессов распространения тепла, фильтрации жидкости и газа в пористой среде, изучение некоторых вопросов теории вероятностей и т.д.

Это уравнение относится к простейшим уравнениям эллиптического типа. К его исследованию приводит изучение задач об электрических и магнитных полях, о стационарном тепловом состоянии, задач гидродинамики и т.д.

В выписанных уравнениях искомая функция u зависит от двух переменных t, x или x, y. Рассматриваются также уравнения и для функций с большим числом переменных. Например, волновое уравнение с тремя независимыми переменными имеет вид

и уравнение Лапласа

Исключительную роль в математической физике играет уравнение Лапласа

Для уравнения Лапласа обычно считают, что необходимо найти функцию , удовлетворяющую этому уравнению внутри некоторой области , ограниченной поверхностью (кривой) , или вне этой области. Если при этом функция должна удовлетворять краевому условию

то говорят, что необходимо решить соответственно внутреннюю или внешнюю задачу Дирихле.

Если краевые условия имеют вид

где есть производная по внешней нормали к границе области , то говорят, что требуется решить задачу Неймана (внутреннюю или внешнюю).

Если краевые условия записываются в форме

то это – третья краевая задача для уравнения Лапласа.

Здесь M текущая точка границы ; , заданные функции.

Если какая-то из последних трех функций тождественно равна нулю, то соответствующее условие называется однородным.

Для уравнения теплопроводности и волнового уравнения во многих случаях приходится решать так называемую смешанную задачу, то есть задачу с начальными и граничными условиями. Если при этом на границе пространственной (плоской) области задано значение искомой функции, то говорят, что поставлена первая смешанная задача.

Если в качестве краевого условия задано значение производной от искомой функции в направлении внешней нормали к границе, то говорят, что решается вторая смешанная задача. Если задана линейная зависимость между значениями функции на границе и ее производной по нормали, то это – третья смешанная задача.

Описание многих физических явлений требует использования интегральных уравнений. Они появляются также при изучении свойств уравнений с частными производными.

Понятие краевой задачи для обыкновенного дифференциального уравнения. Краевые задачи для уравнений эллиптического типа.

Чтобы полностью описать тот или иной физический процесс, необходимо, кроме самого уравнения, описывающего этот процесс, задать начальное состояние этого процесса (начальные условия) и режим на границе той области, в которой происходит этот процесс (граничные условия). Математически это связано с не единственностью решения

дифференциальных уравнений. Действительно, даже для обыкновенных д. у. n-го порядка общее решение зависит от n-произвольных постоянных. Для уравнений же в частных производных решение, вообще говоря, зависит от произвольных функций; например, общее решение уравнения в классе функций, зависящих от переменных и , имеет вид , где — произвольная функция класса . Поэтому, чтобы выделить решение, описывающее реальный физический процесс, необходимо задавать дополнительные условия. Такими дополнительными условиями и являются краевые условия. Соответствующая задача называется краевой задачей.

Краевые условия (граничные условия)— условия, которым должно удовлетворять искомое решение заданного дифференциального уравнения на границе (или ее части) области, где это решение ищется.

Краевые условия обычно задаются с помощью дифференциальных операторов, однако встречаются краевые условия и других типов.

Различают, таким образом, следующие три основных типа краевых задач для дифференциальных уравнений:

  1. Задача Коши для уравнений гиперболического и параболического типов: задаются начальные условия, область совпадает со всем пространством , граничные условия отсутствуют.
  2. Краевая задача для уравнений эллиптического типа: задаются граничные условия на границе , начальные условия, естественно, отсутствуют.
  3. Смешанная задача для уравнений гиперболического и параболического типов: задаются и начальные и граничные условия, .

— область, где происходит процесс, — ее граница, которую считаем кусочно-гладкой поверхностью. Таким образом, есть область изменения аргументов в уравнении, описывающем стационарный процесс – область задания уравнения.

Уравнения эллиптического типа возникают обычно при исследовании стационарных процессов. Время t в эти уравнения не входит, и обе независимые переменные являются

координатами точки. Для задач такого типа ставятся только краевые условия, т. е.

указывается поведение неизвестной функции на контуре области. Для эллиптического уравнения характерно то, что краевые условия задаются на всей границе. Простейшим уравнением эллиптического типа является уравнение Лапласа.

Уравнение Лапласа является основным представителем дифференциальных уравнений с частными производными 2-го порядка эллиптического типа, на котором вырабатывались и вырабатываются основные методы решения краевых задач для эллиптических уравнений.

– уравнение Лапласа для случая функций двух независимых переменных.

–уравнение Лапласа с тремя независимыми переменными, называют оператор Лапласа или лапласиан.

Уравнение Лапласа играет важную роль в приложениях.

Например, ему должно удовлетворять всякое стационарное распределение температуры в теле.

Действительно, если температура не зависит от времени t, то и

уравнение теплопроводности , где — коэффициент

теплопроводности, сводится к уравнению Лапласа.

Применение уравнения Лапласа выходит далеко за рамки вопроса стационарного распределения температуры. Однако при изучении этого уравнения представление функции как температуры очень удобно и наглядно.

Методика изложения темы «Решение краевых задач для уравнения Лапласа для круга и кольца методом разделения переменных» Текст научной статьи по специальности « Математика»

Аннотация научной статьи по математике, автор научной работы — Ахметова Фания Харисовна, Чигирёва Ольга Юрьевна

В статье предлагается методика изложения темы «Решение краевых задач для уравнения Лапласа для круга и кольца методом разделения переменных » в курсе «Уравнения математической физики». Приведены краткие теоретические сведения, связанные с применением метода разделения переменных . Показана общая схема решения краевых задач для уравнения Лапласа для указанных областей. Основные этапы решения сведены в таблицы. Подробно разобраны типовые задачи домашнего задания. Содержание статьи будет полезно студентам, а также преподавателям соответствующих курсов.

Похожие темы научных работ по математике , автор научной работы — Ахметова Фания Харисовна, Чигирёва Ольга Юрьевна

Текст научной работы на тему «Методика изложения темы «Решение краевых задач для уравнения Лапласа для круга и кольца методом разделения переменных»»

Ахметова Ф. Х., Чигирёва О. Ю. Методика изложения темы «Решение краевых задач для уравнения Лапласа для круга и кольца методом разделения переменных» // Научно-методический электронный журнал «Концепт». -2018. — № V10. — 0,3 п. л. — URL: http://e-koncept.ru/2018/186094.htm.

ART 186094 УДК 378.147

Ахметова Фания Харисовна,

кандидат физико-математических наук, доцент ФГБОУ ВО «Московский государственный технический университет им. Н. Э. Баумана», г. Москва dobrich2@mail.ru

Чигирёва Ольга Юрьевна,

кандидат физико-математических наук, доцент ФГБОУ ВО «Московский государственный технический университет им. Н. Э. Баумана», г. Москва k fn12@bmstu.ru

Методика изложения темы «Решение краевых задач для уравнения Лапласа для круга и кольца методом разделения переменных»

Аннотация. В статье предлагается методика изложения темы «Решение краевых задач для уравнения Лапласа для круга и кольца методом разделения переменных» в курсе «Уравнения математической физики». Приведены краткие теоретические сведения, связанные с применением метода разделения переменных. Показана общая схема решения краевых задач для уравнения Лапласа для указанных областей. Основные этапы решения сведены в таблицы. Подробно разобраны типовые задачи домашнего задания. Содержание статьи будет полезно студентам, а также преподавателям соответствующих курсов.

Ключевые слова: метод разделения переменных, задача Штурма — Лиувилля, уравнение Лапласа, краевая задача. Раздел: (01) отдельные вопросы сферы образования.

Математическая физика — это наука о математических моделях физических процессов. Она является важной частью образования выпускника технического университета, поскольку носит междисциплинарный характер. Одни и те же дифференциальные уравнения в частных производных описывают процессы различной природы: физические, химические, экологические, биологические и экономические. Методы математической физики также находят применение при моделировании различных технических устройств. Поэтому при подготовке студентов ставится методическая задача преподавания данной дисциплины в такой форме, которая позволит будущим специалистам не только овладеть математическим аппаратом, но и научиться применять его при решении прикладных задач.

Особое место среди методов решения задач математической физики занимают аналитические методы: метод разделения переменных, метод функции Грина и метод интегральных преобразований [1, 2]. В данной работе рассматривается применение метода разделения переменных при решении краевых задач для уравнения Лапласа для круга и кольца. Используя многолетний опыт преподавания данной дисциплины, авторы систематизировали необходимый теоретический материал [3, 4] и представили общую схему решения краевых задач для указанных областей в наиболее компактной форме. Рассмотренные в работе примеры решения краевых задач содержат подробные пояснения. Такой структурированный подход к изложению материала поможет студентам при самостоятельном изучении данной темы.

научно-методический электронный журнал

issn 2304-120Х Ахметова Ф. Х., Чигирёва О. Ю. Методика изложения темы «Решение краевых задач для уравнения Лапласа для круга и кольца методом разделения переменных» // Научно-методический электронный журнал «Концепт». -2018. — № V10. — 0,3 п. л. — URL: http://e-koncept.ru/2018/186094.htm.

научно-методический электронный журнал

Для описания стационарных процессов в физике обычно используют уравнения эллиптического типа. Наиболее распространенным уравнением этого типа является уравнение Лапласа:

где А — дифференциальный оператор 2-го порядка, называемый оператором Лапласа.

К уравнению Лапласа приводят задачи о стационарном тепловом состоянии однородного тела, равновесном распределении электрических зарядов на поверхности проводника, об установившемся движении несжимаемой жидкости и многие другие [5].

Постановка краевых задач для уравнения Лапласа

Краевая задача для уравнения Лапласа состоит в нахождении функции и (М),

удовлетворяющей в области О уравнению Лапласа и некоторому условию, заданному на границе Е этой области. Такое условие называют граничным и в зависимости от его вида рассматривают следующие краевые задачи:

— первую краевую задачу, или задачу Дирихле, если задано граничное условие 1 -го рода

вторую краевую задачу, или задачу Неймана, если задано граничное условие 2-го рода

третью краевую задачу, если задано граничное условие 3-го рода

где у (Р), I = 1,3 и к (Р )> 0 (к (Р 0) — функции, заданные на границе Е области О;

Я — внешняя нормаль к границе Е.

Если область, в которой поставлена краевая задача, ограничена, то такая задача называется внутренней.

Если область, в которой поставлена краевая задача, является частью пространства, лежащей вне некоторой ограниченной области, то краевая задача называется внешней [6, 7].

При постановке внешней краевой задачи помимо граничного условия необходимо задать условие, описывающее поведение искомой функции на бесконечности. Для задач на плоскости таким условием является ограниченность искомой функции на бесконечности.

Основные свойства 1-й и 2-й внутренних и внешних краевых задач на плоскости

1. Решение внутренней (внешней) задачи Дирихле на плоскости единственно.

2. Внутренняя (внешняя) задача Дирихле на плоскости разрешима при любой непрерывной функции у (Р).

3. Решение внутренней (внешней) задачи Неймана на плоскости определяется с точностью до произвольной аддитивной постоянной.

issn 2304-120X Ахметова Ф. Х., Чигирёва О. Ю. Методика изложения темы «Решение краевых задач для уравнения Лапласа для круга и кольца методом разделения переменных» // Научно-методический электронный журнал «Концепт». -2018. — № V10. — 0,3 п. л. — URL: http://e-koncept.ru/2018/186094.htm.

научно-методический электронный журнал

4. Внутренняя (внешняя) задача Неймана на плоскости разрешима при любой непрерывной функции / (Р), удовлетворяющей условию

где Ь — граница области О (замкнутый контур).

Общая схема решения краевых задач для уравнения Лапласа для круга методом разделения переменных

Введем полярную систему координат (г,ф) с полюсом, совпадающим с центром

круга радиусом Я.

Учитывая, что оператор Лапласа в полярных координатах имеет вид

запишем 3-ю краевую задачу для круга (см. табл. 1).

Постановка 3-й краевой задачи для уравнения Лапласа

Внутренняя краевая задача Внешняя краевая задача

Для значения 0 получаем дифференциальное уравнение

d f dX, ^ r— r—- 1 = 0, dr^ dr )

интегрируя которое находим

X0 (r ) = A + B0 !n r ,

где A и B — произвольные постоянные.

Так как функция lnr при r ^ 0 и r ^ да не ограничена, то для внутренней и внешней краевых задач константу B0 следует положить равной нулю. Таким образом, X0 (r) = A.

При Хп= п2, п е N приходим к следующему дифференциальному уравнению:

r2X„'(r) + rX’n (r)-и2Xn (r) = 0 . Частными решениями этого уравнения являются две линейно независимые функции: X^(r) = rn (ограничена при r ^ 0 и не ограничена на бесконечности) и

Xf)(r) = -1 (ограничена на бесконечности и не ограничена при r ^ 0).

В результате получены решения уравнения (1) в следующем виде:

— для внутренней краевой задачи:

U0 (r,р) = X0 (r )Ф0 (р) = A ,

un (r, р) = Xn (r) Фn (р) = rn (An cos пр + Bn sin пр), и е N;

— для внешней краевой задачи:

U0 (r,р) = X0 (r )Ф0 (р) = A0 ,

un (r,v) = Xn (r) 1Фп (

issn 2304-120X Ахметова Ф. Х., Чигирёва О. Ю. Методика изложения темы «Решение краевых задач для уравнения Лапласа для круга и кольца методом разделения переменных» // Научно-методический электронный журнал «Концепт». -2018. — № V10. — 0,3 п. л. — URL: http://e-koncept.ru/2018/186094.htm.

научно-методический электронный журнал

В силу линейности и однородности уравнения (1) сумма всех таких решений

также будет удовлетворять этому уравнению.

В табл. 2 приведена форма записи решения (9) для различных типов краевых задач.

Вид решения краевой задачи для уравнения Лапласа для круга

Тип краевой задачи Форма записи решения краевой задачи (1), (2)

Внутренняя краевая задача u (r,p) = A + ¿ f Г j (An cos np + Bn sin np) (10)

Внешняя краевая задача x frY u (r,p) = A) +Xf R \ (An cos np + Bn sin np) (11)

Замечание. Для 1 -й и 2-й краевых задач форма записи решений имеет тот же вид, что и для 3-й краевой задачи.

Определим коэффициенты A, A и Bn таким образом, чтобы решение, записанное в виде ряда (10) для внутренней краевой задачи и в виде ряда (11) для внешней краевой задачи, удовлетворяло граничному условию (2).

В результате подстановки (10) и (11) в граничное условие (2) приходим к следующим равенствам:

для внутренней краевой задачи:

Х-г (An cos np + Bn sin np) + h A cos —p + Bn sin np 1 = f (p);

— для внешней краевой задачи:

¡; l(An cosnp + Bn sinnp) + h A0 + ^ An cosnp + Bn sinnp 1 = f (p).

n=1 V R J V n=1 J

Таким образом, для внутренней и внешней краевых задач получаем соотношение

A0h + ¿ (h + n^ (An cos nP + Bn sin nP) = f (p) —

которое представляет собой разложение функции f (p) в ряд Фурье по системе собственных функций <1,cosnp,sinnpf задачи Штурма - Лиувилля. Коэффициенты

Фурье C0 = Ah , C = h + —J A и Dn = h + —| Bn этого разложения вычисляются по формулам

Co =— j f (р)dP. Cn = — j f (p)cosnp¿/p;

Dn = » j f (P) SÍn nPdP ■

issn 2304-i20x Ахметова Ф. Х., Чигирёва О. Ю. Методика изложения темы «Решение краевых задач для уравнения Лапласа для круга и кольца методом разделения переменных» // Научно-методический электронный журнал «Концепт». -2018. — № V10. — 0,3 п. л. — URL: http://e-koncept.ru/2018/186094.htm.

научно-методический электронный журнал

Примеры решения краевых задач для уравнения Лапласа для круга Пример 1 (внутренняя задача Дирихле). Найти решение следующей краевой задачи:

r2 dp2 U0 (2 sin2 p + sin 3p).

= 0, 0 Я, 0 Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

После подстановки этого ряда в граничное условие получаем:

A + ^ A cos np + B sin np = U0 (sin p + cos 2p),

откуда находим значения коэффициентов Фурье:

A = 0; A = U0; An = 0, n e N \ <2>;

B = Uo; Bn = 0, n e N \ <1>.

В результате решение краевой задачи (13) примет вид:

Пример 3 (внутренняя задача Неймана). Найти значение параметра а , при котором разрешима внутренняя задача Неймана, и решить эту задачу:

issn 2304-120X Ахметова Ф. Х., Чигирёва О. Ю. Методика изложения темы «Решение краевых задач для уравнения Лапласа для круга и кольца методом разделения переменных» // Научно-методический электронный журнал «Концепт». -2018. — № V10. — 0,3 п. л. — URL: http://e-koncept.ru/2018/186094.htm.

научно-методический электронный журнал

= 0, 0 Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

n 1 n Dn V R1 У

CnRT1-D» —»»71- sin np = f2 (p). (18)

Для каждой функции fk (р), к = 1,2 запишем разложение в ряд Фурье на отрезке [0,2^] по системе функций <1,cosnp,sinnp>^ :

fk (р) = «0к) + J ■) cos nP + РП) sin nP- (19)

где а(к), af) и рк) — коэффициенты Фурье этих функций, вычисляемые по формулам:

«о) = ^ f f (p) dP — «) = — f fk (p) cos «PdP;

߻k)=- f fk (p)sin npdp. n i

Замечая, что соотношения (17) и (18) представляют собой разложения функций / (р) и / (р) соответственно в ряды Фурье по системе собственных функций

<1,^ ир^т ир>^ задачи Штурма — Лиувилля, приравняем коэффициенты Фурье в разложениях (17) и (19) для функции / (р), а также в разложениях (18) и (19) для функции / (р). В результате получим системы уравнений относительно неизвестных коэффициентов А0, В0, А, Вп, Сп и Вп:

Численные методы решения краевых задач

Постановка задачи и основные положения

Рассмотрим двухточечные краевые задачи, часто встречающиеся в приложениях, например, при решении задач вариационного исчисления, оптимального управления, механики жидкости и газа и др. Пусть дано обыкновенное дифференциальное уравнение

и краевые условия

где [math]F \bigl(x,y,y’,\ldots,y^<(n)>\bigr);

j=\overline[/math] — функции указанных аргументов, заданные в некоторой области их изменения; [math]L[/math] и [math](n-L)[/math] — число условий на левом и правом концах отрезка [math][a,b][/math] соответственно. Общее количество условий равно порядку дифференциального уравнения. Требуется найти функцию [math]y=y(x)[/math] , которая на отрезке [math][a,b][/math] удовлетворяет уравнению (7.1), а на концах отрезка — краевым условиям (7.2).

Если уравнения (7.1),(7.2) линейны относительно искомой функции и ее производных, то краевая задача называется линейной.

Для простоты ограничимся частным случаем линейной краевой задачи для дифференциального уравнения второго порядка [math](n=2)[/math] , которая наиболее часто ставится в вычислительной практике и записывается в виде

(\Omega \equiv [a,b]),[/math]

где [math]p(x),\, q(x),\, f(x)\in C_2[a,b][/math] — заданные функции, а [math]\alpha_0,\,\alpha_1,\, \beta_0,\, \beta_1,\,A,\,B[/math] — заданные числа, 0,

j=0;1[/math] . Требуется найти функцию [math]y(x)[/math] , удовлетворяющую уравнению (7.3) и краевым условиям (7.4). Краевые условия при [math]\alpha_\ne0,

j=0;1[/math] , задают линейную связь между значениями искомого решения и его производной на концах отрезка [math][a,b][/math] .

В простейшем случае, когда [math]\beta_0=0,

\beta_1=0[/math] , краевые условия задают на концах отрезка [math][a,b][/math] только значения функции [math]y(a),\,y(b)[/math] . Такие функциональные условия называют краевыми условиями первого рода. В этом случае краевая задача называется первой краевой задачей.

В случае, когда [math]\alpha_0=0,

\alpha_1=0[/math] , т.е. на концах отрезка заданы только значения производных, краевые условия являются дифференциальными. Такие краевые условия называют условиями второго рода или «мягкими». Последнее название обусловлено тем, что они определяют на концах отрезка [math][a,b][/math] всего лишь наклоны интегральных кривых, а не значения функции [math]y(x)[/math] . В этом случае задача (7.3),(7.4) называется второй краевой задачей.

В общем случае, когда [math]\alpha_0[/math] и (или) [math]\alpha_1;

\beta_0[/math] и (или) [math]\beta_1[/math] не равны нулю, краевые условия носят функционально-дифференциальный характер и называются условиями третьего рода. Тогда задача (7.3),(7.4) называется третьей краевой задачей.

Например, условия [math]y(a)=A,

y(b)=B[/math] являются условиями первого рода. Геометрически это означает, что при решении первой краевой задачи требуется найти интегральную кривую уравнения (7.3), проходящую через данные точки [math](a,A),\, (b,B)[/math] (рис. 7.1,а). Условия [math]y'(a)=A,\, y'(b)=B[/math] являются условиями второго рода. Геометрически вторая краевая задача сводится к отысканию интегральной кривой уравнения, пересекающей прямые [math]x=a,

x=b[/math] под заданными углами [math]\alpha,\,\beta[/math] , где [math]\operatorname\alpha=A,

\operatorname\beta=B[/math] (рис. 7.1,6). Условия [math]y'(a)=A,

y(b)=B[/math] являются частным случаем краевых условий третьего рода, так как [math]\alpha_0=0,

\beta_1=0[/math] . Геометрически данная краевая задача сводится к отысканию интегральной кривой уравнения, проходящей через точку [math](b,B)[/math] и пересекающей прямую [math]x=a[/math] под данным углом [math]\alpha[/math] , где [math]\operatorname\alpha= A[/math] (рис. 7.1,в).

В общем случае краевая задача может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь несколько или бесконечно много решений.

Утверждение 7.1 (о существовании и единственности решения краевой задачи (7.3),(7.4)). Для того чтобы существовало единственное решение краевой задачи (7.3),(7.4), необходимо и достаточно, чтобы однородная краевая задача

имела только тривиальное решение [math]y(x)\equiv0[/math] .

Пример 7.1. Найти аналитическое решение следующих краевых задач:

0 \leqslant x \leqslant \frac<\pi><2>,

y\! \left(\frac<\pi><2>\right)-y’\! \left(\frac<\pi><2>\right)=2[/math] (третья краевая задача);

0 \leqslant x \leqslant 1,

y(1)=0[/math] (первая краевая задача).

Воспользуемся известной методикой отыскания общих решений дифференциальных уравнений. Подставив в них заданные краевые условия, получим аналитические решения данных краевых задач.

1. Найдем общее решение однородного уравнения [math]y»+y=0[/math] , одинакового для обеих рассматриваемых задач. Так как характеристическое уравнение [math]\lambda^2+1=0[/math] имеет комплексные сопряженные корни [math]\lambda_<1,2>=\pm i= \alpha\pm \beta i[/math] [math](\alpha=0,

\beta=1)[/math] , то общее решение будет

2. Частные решения неоднородных уравнений находятся методом подбора. Подставляя [math]y_<\text>(x)=C[/math] в уравнение [math]y»+y=1[/math] , а [math]y_<\text>(x)=Dx[/math] в уравнение [math]y»+y=-x[/math] , получаем [math]C=1,

D=-1[/math] . Поэтому [math]y_<\text>(x)=1[/math] в случае «а», [math]y_<\text>(x)=-x[/math] в случае «б».

3. Найдем общее решение неоднородного уравнения как сумму общего решения однородного уравнения и частного решения неоднородного уравнения:

а) [math]y(x)=C_1\cos x+C_2\sin x+1[/math] ; б) [math]y(x)=C_1\cos x+C_2\sin x-x[/math] .

4. Определим значения произвольных постоянных из краевых условий третьего рода (случай «а») и первого рода (случай «б»):

а) найдем [math]y'(x)=-C_1\sin x+C_2\cos x[/math] . Тогда

Отсюда [math]C_1=1[/math] и [math]y(x)=1+\cos x[/math] — решение краевой задачи «а»;

б) общее решение [math]y(x)=C_1\cos x+C_2\sin x-x[/math] и, следовательно, [math]y(0)=C_1=0,

y(1)=C_1\cos1+ C_2\sin1-1=0[/math] , отсюда [math]C_2= \frac<1><\sin1>[/math] и [math]y(x)=\frac<\sin x><\sin1>-x[/math] — решение краевой задачи «б». Таким образом, решение краевой задачи представляет собой такое частное решение, которое удовлетворяет краевым условиям.

Рассмотренный метод нахождения аналитического решения краевых задач применим для ограниченного класса задач. Поэтому в вычислительной практике используются численные и приближенно-аналитические методы, позволяющие найти приближенное решение краевых задач, точные аналитические решения которых не могут быть найдены.

Метод сеток

Рассмотрим линейную краевую задачу с краевыми условиями первого рода (первую краевую задачу):

где [math]p(x),q(x),f(x)\in C_2[a,b][/math] — заданные функции; [math]A,\,B[/math] — заданные числа.

Очевидно, любой отрезок [math][a,b][/math] , на котором ищется решение краевой задачи, можно привести к отрезку [math][0;1][/math] с помощью линейного преобразования [math]\widetilde= \frac[/math] . Действительно, тогда новая переменная [math]\widetilde\in [0;1][/math] . В результате без ограничения общности краевая задача (7.5) может быть решена сначала на отрезке [math][0;1][/math] , а затем это решение с помощью преобразования [math]x=a+(b-a)\cdot \widetilde[/math] может быть записано на отрезке [math][a,b][/math] . То же относится и к исследованию свойств полученного решения.

Утверждение 7.2 (о единственности решения краевой задачи (7.5)). Если функции [math]p(x),q(x),f(x)[/math] принадлежат классу [math]C_2[a,b],

q(x) \geqslant 0[/math] на [math][0;1][/math] , то краевая задача (7.5) имеет единственное решение [math]y(x)\in C_4[0;1][/math] .

Для решения задачи (7.5) применим метод сеток, получаемый путем аппроксимации первой и второй производных. Введем равномерную сетку (где [math]n[/math] — число отрезков разбиения)

Функции [math]p(x),q(x),f(x)[/math] заменяются их проекциями на сетку [math]\Omega_n[/math] , то есть [math]p(x)\to p(x_)=p_i,[/math] [math]q(x)\to q(x_)=q_i,[/math] [math]f(x)\to f(x_)= f_i,[/math] . Вместо точного решения [math]y(x)[/math] отыскивается некоторое приближение [math]\widehat_= \widehat(x_)\approx y(x_),

i=\overline<0,n>[/math] . Первая и вторая производные аппроксимируются на трехточечном шаблоне [math](x_,x_,x_)[/math] по формулам второго порядка (5.10),(5.14):

Краевые условия для этой задачи аппроксимируются точно, т.е. [math]y(a)[/math] и [math]y(b)[/math] заменяются на [math]\widehat_<0>[/math] и [math]\widehat_[/math] . После замены от дифференциальной задачи (7.5) переходим к разностной схеме:

представляющей собой систему алгебраических уравнений трехдиагонального вида:

\delta_=f_[/math] . Здесь система (7.6) записана для внутренних узлов сетки [math]\Omega_n[/math] . Она является трехдиагональной системой линейных алгебраических уравнений и решается методом прогонки.

1. Изложенный метод сеток допускает обобщение. Например, его можно применять для решения нелинейной краевой задачи:

где [math]F(x,y)[/math] — нелинейная по [math]y[/math] функция (в общем случае, который здесь не рассматривается, функция [math]F[/math] зависит также и от [math]y'[/math] ).

Рассуждая аналогично рассмотренному выше способу, перейдем к разностной задаче:

В силу нелинейности правой части полученная алгебраическая система является нелинейной и для ее решения нельзя использовать метод прогонки в том виде, в каком он изложен для линейной задачи. Поэтому для ее решения используем метод простых итераций, с помощью которого при фиксированном [math]k[/math] (номер итерации) система алгебраических уравнений (7.8) превращается в линейную, так как величины, входящие в правую часть системы, известны из предыдущей итерации. Действительно, для k-й итерации получается система (которая решается на каждой итерации методом прогонки)

Можно показать, что итерации сходятся при выполнении условия [math]q=\frac<1><8>(x_n-x_0)^2M_1 [math]M_1=\max_<[a,b]>\left|\frac<\partial F><\partial y>\right|[/math] с линейной скоростью.

2. Краевые условия второго и третьего рода в задаче, аналогичной (7.5), могут быть аппроксимированы несколькими способами.

Первый способ. Использование аппроксимационных формул (5.4) первого порядка

В силу первого порядка этих аппроксимаций метод сеток в этом случае также будет иметь первый порядок аппроксимации.

Второй способ. Применение формулы Тейлора и ее преобразование с использованием дифференциального уравнения. Таким способом может быть достигнут второй порядок аппроксимации.

Третий способ. Применение левосторонней (5.8) и правосторонней (5.9) формул, аппроксимирующих производные со вторым порядком:

3. Порядок аппроксимации схемы определяется минимальным порядком аппроксимации дифференциального уравнения и краевых условий.

Алгоритм применения метода сеток

1. Задать сетку [math]\Omega_n[/math] на отрезке [math][a,b][/math] или сформировать ее из условий достижения требуемой точности.

2. Используя аппроксимационные формулы (5.10),(5.14) и один из трех способов аппроксимации краевых условий (в случае, если они второго или третьего рода), перейти от исходной дифференциальной задачи к системе алгебраических уравнений (разностной схеме), неизвестными в которой являются величины, «близкие» к решению краевой задачи в узлах сетки.

3. Найти решение разностной задачи путем решения трехдиагональной системы уравнений и таким образом определить приближенное решение краевой задачи.

Пример 7.2. Найти приближенное решение краевой задачи [math]y»+y=1,

0 \leqslant x \leqslant \frac<\pi><2>,[/math] [math]y'(0)=0,[/math] [math]y\! \left(\frac<\pi><2>\right)-y’\! \left(\frac<\pi><2>\right)=2[/math] при [math]n=3[/math] , используя первый способ аппроксимации краевых условий. Записать разностные схемы для второго и третьего способов при произвольном [math]n[/math] .

В поставленной задаче

Для решения задачи воспользуемся методикой.

1. Так как [math]n=3[/math] , то сетка имеет вид [math]\Omega_3=\[/math] , где [math]x_=ih,

y\! \left(\frac<\pi><6>\right)=y_1,[/math] [math]y\! \left(\frac<\pi><3>\right)=y_2,[/math] [math]y\! \left(\frac<\pi><2>\right)=y_3[/math] . Будем искать приближенные значения [math]\widehat_0,\widehat_1, \widehat_2, \widehat_3[/math] . Проекции функций [math]p(x), q(x), f(x)[/math] на сетку имеют вид [math]p_=0,

2. Составим разностную схему. Согласно (7.6), для внутренних узлов сетки получаем

i=1;2[/math] или [math]\widehat_-(2-h^2)\widehat_+ \widehat_=h^2,

Применим первый способ аппроксимации краевых условий. По формуле (5.4) с учетом условия [math]y'(0)=0[/math] на левом конце имеем

На правом конце [math]y\! \left(\frac<\pi><2>\right)=y_3,

y’\! \left(\frac<\pi><2>\right)=y’_3[/math] , и по второй из формул (7.9) [math]\widehat\,’_<3>= \frac<\widehat_<3>-\widehat_<2>>[/math] . Тогда краевое условие [math]y\! \left(\frac<\pi><2>\right)-y’\! \left(\frac<\pi><2>\right)=2[/math] аппроксимируется выражением

В результате получаем разностную схему первого порядка аппроксимации (трехдиагональную систему линейных алгебраических уравнений)

Сравнивая первое уравнение этой системы с рекуррентным соотношением [math]\widehat_= P_\cdot \widehat_+ Q_[/math] метода прогонки, характеризующим обратный ход, получаем [math]P_0=1,

После этого вычисляются все последующие прогоночные коэффициенты по формулам:

Здесь [math]\alpha_,\beta_,\gamma_[/math] соответствуют коэффициентам левой части полученной алгебраической системы, а [math]\delta_[/math] — правой части.

Далее выполняется обратный ход: [math]\widehat_<3>=Q_3,

\widehat_<2>= P_2\widehat_<3>+ Q_2,

\widehat_<1>= P_1\widehat_<2>+ Q_1[/math] .

Результаты решения краевой задачи приведены в табл. 7.1, в которой последний столбец соответствует точному решению [math]y(x)=1+\cos x[/math] , найденному в примере 7.1.

7.1>>\\\hline i& \alpha_& \beta_& \gamma_& \delta_& P_& Q_& \widehat_& y(x) \\\hline 0& 0&-1,\!0000&-1& 0,\!00000& 1,\!00000& 0& 1,\!8648& 2,\!0000\\\hline 1& 1& 1,\!72584& 1& 0,\!27415& 1,\!37771&-0,\!37770& 1,\!8648& 1,\!8666\\\hline 2& 1& 1,\!72584& 1& 0,\!27415& 2,\!87240&-1,\!87242& 1,\!6277& 1,\!5000\\\hline 3& 1& 0,\!47640&-& 1,\!04200&-& 1,\!21853& 1,\!21853& 1,\!0000\\\hline \end[/math]

В силу того, что краевые условия аппроксимированы с первым порядком относительно [math]h[/math] , в данном случае получена разностная схема первого порядка, так как порядок аппроксимации схемы определяется минимальным порядком аппроксимации дифференциального уравнения и краевых условий.

Воспользуемся вторым способом аппроксимации краевых условий для построения разностной схемы второго порядка аппроксимации. Разложим [math]y(x)[/math] в точке [math]x=x_1[/math] относительно точки [math]x_0[/math] по формуле Тейлора:

Выразим из этого соотношения [math]y'(x_0)[/math] и подставим в него вместо [math]y»(x_0)[/math] выражение [math]y»(x_0)=1-y(x_0)=1-y_0[/math] , определяемое исходным дифференциальным уравнением:

Как показывает это соотношение, дифференциальное условие на левой границе аппроксимируется на двухточечном шаблоне [math](x_0,x_1)[/math] со вторым порядком аппроксимации двухточечным алгебраическим уравнением:

Аналогично получается двухточечное алгебраическое уравнение при / [math]i=n-1[/math] и [math]i=n[/math] . Разложение [math]y(x)[/math] в точке [math]x=x_[/math] относительно точки [math]x_n[/math] по формуле Тейлора имеет вид

Выражая отсюда [math]y'(x_n)[/math] с учетом связи [math]y»(x_n)=1-y(x_n)=1-y_n[/math] , следующей из исходного дифференциального уравнения, получаем

Подставим это выражение в граничное условие:

Таким образом, система линейных алгебраических уравнений в окончательном виде записывается следующим образом:

Эта трехдиагональная система, отличающаяся от полученной первым способом только первым и последним уравнениями, решается численно методом прогонки.

Применим третий способ аппроксимации краевых условий для построения разностной схемы второго порядка. Так, для крайней левой точки используется левосторонняя формула (5.8):

Тогда получается трехточечное алгебраическое уравнение:

Аппроксимация производной [math]y’\! \left(\frac<\pi><2>\right)[/math] в крайней правой точке по правосторонней формуле [math]\widehat\,’_= \frac<1> <2h>\bigl(\widehat_-4\widehat_+ 3\widehat_\bigr)[/math] приводит к трехточечному алгебраическому уравнению:

Тогда в этом случае получается следующая система линейных алгебраических уравнений:

Здесь [math]\widehat_<2>[/math] в первом уравнении и [math]\widehat_[/math] в последнем нарушают ее трехдиагональный характер. В этом случае система приводится к трехдиагональному виду путем исключения [math]\widehat_<2>[/math] и [math]\widehat_[/math] из первых двух и последних двух уравнений системы и после этого решается методом прогонки.

Методы минимизации невязки

Описываемые здесь методы относятся к приближенно-аналитическим и могут применяться при решении достаточно широкого класса задач. На основе одного из приближенно-аналитических методов (метода Галеркина) строится метод конечных элементов, излагаемый в разд. 7.5.

Рассмотрим линейную краевую задачу (7.3),(7.4). Ее решение будем искать в виде

где [math]\varphi_0(x), \varphi_1(x), \ldots, \varphi_m(x)[/math] — элементы заданной системы функций; [math]a_1,\ldots,a_m[/math] — неопределенные коэффициенты. Заданная система функций называется базисной, и ее элементы должны удовлетворять условиям:

а) [math]\varphi_(x)\in C_2[a,b],

б) при любом конечном [math]m[/math] функции [math]\varphi_1(x), \ldots, \varphi_m(x)[/math] линейно независимы на отрезке [math][a,b][/math] ;

в) [math]\varphi_0(x)[/math] удовлетворяет краевым условиям (7.4)

г) [math]\varphi_1(x), \ldots, \varphi_m(x)[/math] удовлетворяют условиям

называется невязкой . Она равна разности левой и правой частей уравнения (7.3), образующейся при подстановке [math]\widehat_(x)[/math] вместо [math]y(x)[/math] в дифференциальное уравнение, и характеризует степень отклонения функции [math]\widehat_(x)[/math] от точного решения краевой задачи. Если при некоторых значениях коэффициентов [math]a_1,\ldots,a_m[/math] невязка тождественно равна нулю на отрезке [math][a,b][/math] , а именно

то функция [math]\widehat_(x)[/math] совпадает с точным решением краевой задачи (7.3),(7.4), так как удовлетворяются и уравнение, и краевые условия.

Однако при решении краевых задач, как правило, не удается получить невязку тождественно равной нулю. Поэтому ставится задача: вычислить коэффициенты [math]a_1,\ldots,a_m[/math] таким образом, чтобы невязка в каком-либо смысле стала меньшей. Полученные в результате коэффициенты определяют приближенное решение (7.11).

Выражение для невязки [math]\varepsilon(x; a_1,\ldots, a_m)[/math] с учетом (7.11) удобно записывать в следующей эквивалентной форме:

где [math]L\widehat_\equiv \widehat\,»_(x)+ p(x)\widehat\,’_(x)-q(x) \widehat_(x),

L[/math] — линейный оператор задачи (7.3),(7.4) (выполняются равенства [math]L(y+z)= Ly+Lz,[/math] [math]L(Cy)=C\cdot Ly[/math] для любых [math]y,\,z[/math] и постоянной [math]C[/math] ).

Рассмотрим различные методы, минимизирующие невязку .

А. Метод коллокации. На интервале [math](a,b)[/math] задаются т точек [math]x_1,\ldots, x_n[/math] (точек коллокации) и требуется, чтобы в каждой из них невязка (7.14) обращалась в нуль:

С учетом (7.16) эта система принимает вид

Если полученная система [math]m[/math] линейных уравнений совместна, то из нее определяются коэффициенты [math]a_1,\ldots, a_m[/math] , которые затем подставляются в (7.11).

Б. Метод наименьших квадратов (непрерывный вариант). Неизвестные коэффициенты [math]a_1,\ldots, a_m[/math] должны обеспечивать минимум интеграла от квадрата невязки:

Для решения задачи применяются необходимые условия безусловного экстремум:

Подставляя (7.16) в (7.19), получаем систему [math]m[/math] линейных алгебраических уравнений для нахождения коэффициентов [math]a_1,\ldots, a_m\colon[/math]

В. Метод наименьших квадратов (дискретный вариант). Неизвестные коэффициенты [math]a_1,\ldots,a_m[/math] должны обеспечивать минимум суммы квадратов значений невязки в заданном наборе точек [math]x_1,\ldots,x_n;

n \geqslant m[/math] , то есть [math]x_\in (a,b),

Для решения задачи применяются необходимые условия безусловного экстремума

Отсюда следует система [math]m[/math] линейных уравнений для нахождения коэффициентов [math]a_1,\ldots,a_m[/math] , которая по форме записи совпадает с (7.20), но скалярное произведение определяется по формуле [math]\textstyle<(f,g)= \sum\limits_^ f(x_)g(x_)>[/math] .

Замечание. При [math]n=m[/math] результаты, полученные точечным методом наименьших квадратов и методом коллокации, совпадают. В этом случае точки [math]x_1,\ldots, x_n[/math] являются точками коллокации.

Г. Метод моментов (взвешенных невязок). Неизвестные коэффициенты ах. ат находятся из условия равенства нулю /и моментов невязки:

j=\overline<1,m>[/math] — функции, удовлетворяющие условиям:

б) функции [math]\psi_(x)[/math] являются элементами системы степеней [math]x[/math] или системы тригонометрических функций.

j=\overline<1,m>[/math] называются весовыми, а условие (7.22) является условием ортогональности невязки к весовым функциям.

Д. Метод Галсркина. Он является частным случаем метода моментов, когда в качестве весовых функций используются базисные. Коэффициенты [math]a_1,\ldots,a_m[/math] находятся из условия ортогональности функций базисной системы [math]\varphi_1(x),\ldots, \varphi_(x)[/math] к невязке:

Отсюда следует система [math]m[/math] линейных уравнений для нахождения коэффициентов:

Известно, что при достаточно большом [math]m[/math] условие (7.23) обеспечивает малость невязки в среднем.

Алгоритм применения методов минимизации невязки

1. В выражении (7.11) выбрать систему базисных функций, задать число [math]m[/math] в зависимости от требуемой точности.

2. Найти коэффициенты [math]a_1,\ldots,a_m[/math] путем решения одной из систем алгебраических уравнений (7.18),(7.20),(7.24) в зависимости от выбранного метода.

3. Выписать приближенное решение краевой задачи по формуле (7.11).

Пример 7.3. Найти приближенное решение краевой задачи [math]y»+y=-x,

0 \leqslant x \leqslant 1,[/math] [math]y(0)=0,

y(1)=0[/math] методом коллокации, интегральным методом наименьших квадратов, методом Галеркина

В поставленной задаче

Точное решение найдено в примере 7.1.

Воспользуемся сначала методом коллокации.

1. Зададим [math]m=2[/math] и будем искать решение в виде

где [math]\varphi_0(x)\equiv0[/math] (эта функция удовлетворяет каждому из краевых условий, т.е. [math]\varphi_0(0)=0,

\varphi_0(1)=0[/math] ), функции [math]\varphi_1(x)= x(1-x),

\varphi_2(x)= x^2(1-x)[/math] . Функции [math]\varphi_1(x),\, \varphi_2(x)[/math] линейно независимые, дважды непрерывно дифференцируемые и удовлетворяют условию (7.13). Действительно,

Таким образом, решение краевой задачи ищется в форме

2. Так как [math]m=2[/math] и [math]\varphi_0(x)\equiv 0[/math] , то система (7.18) имеет вид

Выберем узлы коллокации: [math]x_1=1\!\!\not<\phantom<|>>\,4,

Таким образом, имеем линейную систему относительно [math]a_1[/math] и [math]a_2\colon[/math]

3. Приближенное решение задачи: [math]\widehat_2(x)= \frac<217>(42+40x)[/math] .

Решим теперь задачу методом наименьших квадратов (см. непрерывный вариант).

1. Решение краевой задачи ищется в форме [math]\widehat_2(x)= a_1\cdot x(1-x)+ a_2\cdot x^2(1-x)[/math] .

2. Так как [math]f(x)=-x,

\varphi_0(x)\equiv 0[/math] , то система (7.20) имеет вид

Итак, имеем линейную систему относительно [math]a_1[/math] и [math]a_2\colon[/math]

Приближенное решение задачи: [math]\widehat_2(x)=0,\!1875419x(1-x)+ 0,\!1694707x^2(1-x).[/math] .

Решим задачу методом Галеркина.

1. Пусть сначала [math]m=1[/math] . Решение ищется в форме [math]\widehat_1(x)= a_1\cdot x(1-x)[/math] .

2. Тогда система (7.24) преобразуется к виду

Так как [math]\varphi_1(x)= x(1-x),

L\varphi_1(x)= \varphi»_1(x)+ \varphi_1(x)=-2+x(1-x)[/math] , получаем

После вычисления интегралов имеем уравнение [math]-\frac<3><10>\,a_1=-\frac<1><12>[/math] , откуда [math]a_1=\frac<5><18>[/math] .

3. Приближенное решение краевой задачи: [math]\widehat_1(x)=\frac<5><18>\,x(1-x)[/math] . Пусть теперь [math]m=2[/math] .

1. Решение краевой задачи ищется в форме [math]\widehat_2(x)=a_1\cdot x(1-x)+ a_2\cdot x^2(1-x)[/math] .

2. Тогда система (7.24) имеет вид

Вычисляя интегралы, находим

3. Приближенное решение краевой задачи: [math]\widehat_2(x)= x(1-x)\! \left(\frac<71><369>+ \frac<7><41>\,x\right)[/math] .

Сопоставим полученные решения с точным (табл. 7.2).

7.2>>\\\hline x& y_<\text>& y_<\text>& y_<\text>& \text \\\hline 0,\!25& 0,\!045& 0,\!04311& 0,\!0440& 0,\!044014 \\\hline 0,\!50& 0,\!071& 0,\!06807& 0,\!0698& 0,\!069747 \\\hline 0,\!75& 0,\!062& 0,\!05899& 0,\!0600& 0,\!060050 \\\hline \end[/math]

Очевидно, метод Галеркина дал более точный результат.

Пример 7.4. Найти приближенное решение краевой задачи [math]y»+2xy’-2y=2x^2,

0 \leqslant x \leqslant 1,[/math] [math]y'(0)=-2,

y(1)+y'(1)=0[/math] методом Галеркина.

В поставленной задаче

1. Зададим [math]m=2[/math] и подберем функции [math]\varphi_0(x),\, \varphi_1(x),\, \varphi_2(x)[/math] , используя систему [math]1,x,x^2,\ldots[/math] . Функция [math]\varphi_0(x)[/math] должна удовлетворять условиям (7.12):

Пусть [math]\varphi_0(x)=b+cx[/math] , где [math]b,\,c[/math] — неопределенные коэффициенты. Тогда

Отсюда [math]b=4[/math] и [math]\varphi_0(x)=4-2x[/math] .

Функции [math]\varphi_1(x),\, \varphi_2(x)[/math] должны удовлетворять условиям (7.13):

Первое условие выполняется для функций вида [math]\varphi_= x^+b_[/math] . Значения [math]b_[/math] находятся из второго условия [math]1+b_+j+1=0[/math] , откуда [math]b_=-j-2[/math] . Тогда получаем [math]\varphi_1(x)=x^2-3,

Таким образом, решение краевой задачи ищется в форме

2. Тогда система (7.24) имеет вид

3. Приближенное решение краевой задачи [math]\widehat_2(x)= x^2-2x+1[/math] .

Методы сведения краевой задачи к задаче Коши

Метод стрельбы. Суть этого метода заключается в сведении решения краевой задачи к многократному решению задачи Коши. Принцип построения метода стрельбы рассмотрим на примере нелинейной краевой задачи:

где [math]f(x,y,y’)[/math] — нелинейная функция, обусловливающая нелинейность дифференциального уравнения (7.25).

При введении новой переменой [math]z=y'[/math] уравнение (7.25) записывается в нормальной форме Коши, а краевые условия видоизменяются:

где [math]\eta=y'(a)=\operatorname\alpha[/math] — параметр, равный тангенсу угла наклона интегральной кривой в точке [math]x=a[/math] . Угол [math]\alpha[/math] (параметр [math]\eta[/math] ) в процессе многократного решения краевой задачи должен принять такое значение, чтобы интегральная кривая «попала в цель», т.е. в точку [math](b,B)[/math] (рис.7.2 ,а). В общем случае полученное при некотором значении [math]\eta[/math] решение [math]y(x,\eta)[/math] не будет удовлетворять условию [math]y(b,\eta)=B[/math] на правом конце отрезка.

Следовательно, требуется найти такое значение параметра [math]\eta[/math] , чтобы оно было корнем нелинейного уравнения [math]\Phi(\eta)= y(b,n)-B=0[/math] . Для решения этого уравнения, как правило, используются методы половинного деления или секущих. В случае использования метода половинного деления сначала делают «пробные» выстрелы при выбранных наугад или в соответствии с некоторым алгоритмом значениях [math]\eta[/math] до тех пор, пока среди значений [math]\Phi(\eta)[/math] не окажется двух противоположных по знаку. Им соответствует начальный интервал неопределенности, который далее последовательно сокращается путем деления пополам. При применении метода секущих используется формула

где [math]\eta^<(0)>,\,\eta^<(1)>[/math] — начальные значения параметра, [math]k[/math] — номер итерации. Итерации прекращаются при выполнении условия окончания [math]\bigl|\Phi(\eta^<(k)>)\bigr| \leqslant \varepsilon[/math] или [math]\bigl|\eta^<(k+1)>-\eta^<(k)>\bigr| \leqslant \varepsilon[/math] с некоторым положительным [math]\varepsilon[/math] , характеризующим точность решения задачи.

Замечание. Точность решения краевой задачи зависит не только от точности определения параметра [math]\eta[/math] , но также и от точности решения соответствующей задачи Коши. Поэтому одновременно с уточнением параметра [math]\eta[/math] рекомендуется уменьшать шаг при решении задачи Коши, либо выбирать более точный метод.

Рассмотрим применение метода стрельбы для решения линейной краевой задачи (7.3),(7.4):


источники:

http://cyberleninka.ru/article/n/metodika-izlozheniya-temy-reshenie-kraevyh-zadach-dlya-uravneniya-laplasa-dlya-kruga-i-koltsa-metodom-razdeleniya-peremennyh

http://mathhelpplanet.com/static.php?p=chislennyye-metody-resheniya-krayevykh-zadach