Решения логарифмических и тригонометрических уравнений

Задача C1: логарифмы и тригонометрия в одном уравнении

19 февраля 2014

Сегодня у нас будет насыщенный урок, потому что уравнение, которое мы будем сегодня разбирать, содержит в себе и логарифмическую, и тригонометрическую функцию. Но все по порядку.

Задача C1. Решите уравнение. Найдите все корни этого уравнения, принадлежащие промежутку.

На первый взгляд, задача кажется весьма нестандартной: тут и логарифмы, и тригонометрия. Но если разобраться, то окажется, что уравнения такого типа вполне под силу большинству учеников.

Решение логарифмического уравнения

Итак, нужно решить уравнение:

log5 (cos x − sin 2 x + 25) = 2

Как видим, в первую очередь перед нами логарифмическое уравнение. Вспоминаем: как мы решаем логарифмическое уравнение? Очевидно, приводим его к каноническому виду, а именно:

log a f ( x ) = log a g ( x )

В нашем случае слева уже стоит логарифм по основанию 5. Следовательно, двойку тоже нужно представить в виде логарифма по тому же самому основанию 5. Вспоминаем, как это делается. С помощью нашей замечательной формулы:

Разумеется, мы можем подставить любое число b , удовлетворяющее требованиям, которые накладываются на основание логарифма:

Иначе наш логарифм просто не имеет смысла. Но какое именно b выбрать? Очевидно, что основание логарифма по нашей канонической записи должно быть равно основанию уже имеющегося логарифма, т. е. 5. Т.е. в нашем случае запишем:

Перепишем Все уравнение с учетом этого факта:

log5 (cos x − sin 2 x + 25) = log5 25

Перед нами каноническое логарифмическое уравнение. В нем мы можем смело убрать знаки логарифма (т.е. просто приравнять аргументы логарифмов). Получим:

cos x − sin 2 x + 25 = 25

Решение тригонометрического уравнения

Перед нами тригонометрическое уравнение. Переносим 25 влево и получаем:

cos x − sin 2 x = 0

Теперь нам нужно решить обычное тригонометрическое уравнение. Все тригонометрические уравнения должны быть сведены к простейшему уравнению одного из трех видов:

Подобно тому, как в логарифмах есть каноническая запись, точно так же и в тригонометрии есть каноническая запись уравнений. Давайте еще раз посмотрим на наше уравнение:

cos x − sin 2 x = 0

Что-то канонической записью тут не пахнет. Во-первых, аргументы у наших тригонометрических функций разные. И это первая проблема. Следовательно, надо каким-то образом избавится от аргумента 2 x и свести его к х. Или, наоборот: сделать так, чтобы вместо переменной x стояло 2 x .

Еще раз: когда мы видим тригонометрическое уравнение, первое, что нам нужно — это постараться сделать так, чтобы во всех тригонометрических функциях были одинаковые аргументы: везде либо х, либо 2х. Любыми правдами и неправдами, любыми преобразованиями функций мы должны добиться того, чтобы аргументы были равными.

При решении тригонометрических уравнений сводите все функции к одному и тому же аргументу.

Формула синуса двойного угла

В данном случае все очень легко. Вспоминаем формулу синуса двойного угла:

sin 2 x = 2sin x · cos x

Подставляем это выражение в наше уравнение:

cos x − 2sin x · cos x = 0

Мы видим, что и в первом, и во втором слагаемом есть cos x . Выносим его за скобку:

cos x (1- 2sin x · 1) = 0

Кто-то скажет, что 1 в скобках писать излишне. Да, я не спорю, можно сразу записать так:

cos x (1- 2sin x ) = 0

Однако если вы только разбираетесь в тригонометрических уравнениях, то лучше использовать эту избыточность и записать ту самую единицу. Почему? Да потому что если вы не запишете 1 в конце перед скобкой, то велика вероятность, что вы забудете про единицу и в начале. В итоге у вас получится неверное выражение и, соответственно, мы получим неверный ответ.

А вот так, с дополнительной единичкой, никаких проблем не возникнет. В общем, запомните правило: если из какого-то выражения выносим переменную или функцию, вместо этой нее мы везде пишем единицу. И лишь затем, после того, как мы запишем эту конструкцию в скобках, мы можем убрать лишние единицы, если это возможно.

Рекомендую оставлять единицы на месте <<всех>> общих множителей, которые выносятся за скобку. Так вы застрахуете себя от обидных ошибок.

Разложение уравнения на множители

В нашем случае все возможно. Получим:

cos x (1- 2sin x ) = 0

Произведение равно нулю, когда хотя бы один из множителей равен нулю: либо cos x = 0, либо 1 − 2sin x = 0

Перед нами совокупность из двух простейших тригонометрических уравнений:

cos x = 0; 1 = 2sin x = 0.

Однако cos x = 0 — это уже каноническая запись вида cos x = a — именно так, как нужно для решения задачи. А вот второе уравнение — 1− 2sin x — нужно преобразовать. Предлагаю выразить отсюда sin x :

-2sin x = -1;
sin x = 1/2.

Мы получили окончательную совокупность:

cos x = 0; sin x = 1/2.

Таким образом, перед нами два канонических уравнения, которые легко решаются. Вспоминаем, что cos x = 0 — это частный случай, поэтому x = π/2 + π n , n ∈ Z .

Особенности решения тригонометрических уравнений с синусом

С другой стороны, sin x = 1/2 — это не частный, а общий случай. Кроме того, всем своим ученикам я рекомендую расписывать решения уравнений вида sin x = a через совокупность двух множеств:

sin x = a ⇒
x = arcsin a + 2π n , n ∈ Z;
x = π − arcsin a + 2π n , n ∈ Z .

Обратите внимание: в обоих вариантах периодом будет именно величина 2π, т.е. полный оборот на тригонометрическом круге! В нашем случае получим:

Итого мы получили совокупность из трех наборов корней:

Область определения логарифмов — считать или не считать?

Внимательные ученики наверняка заметят: изначально мы решали логарифмическое уравнение и, следовательно, должны учесть область определения логарифма. Потому что если где-то в уравнении встречается выражение вида log a f ( x ) = log a g ( x ), мы обязаны проверить, что f ( x ) > 0.

Почему же при решении данного уравнения мы нигде это не записали? Это же ошибка! Спокойно: в данном случае никакой ошибки нет. Требование к логарифму, чтобы аргумент был больше нуля, выполняется автоматически на следующем шаге:

cos x − sin 2 x + 25 = 25

Получается, что выражение под знаком логарифма в нашем случае должно быть равно 25. А 25 заведомо больше нуля, т. е. область определения автоматически выполняется для всех корней, которые мы получим в процессе решения уравнения.

И вообще, запомните: когда в уравнении присутствует лишь один логарифм, в аргументе которого имеется функция переменного х, можно вообще не заморачиваться с проверкой области определения, потому что эта область определения будет автоматически выполняться в процессе решения уравнения. Но это работает только для уравнений и только в том случае, если логарифм с функцией присутствует лишь в одном экземпляре на все уравнение.

Требования к области определения выполняются автоматически, если функция стоит в аргументе логарифма, а сам логарифм встречается в уравнении лишь один раз.

В нашем случае это требование выполняется, потому что мы решаем именно уравнение, а не неравенство, и логарифм с функцией в аргументе встречается только один. Собственно, исходное уравнение вообще содержит только один логарифм, поэтому считать область определения в данном случае излишне. Следовательно, мы решили уравнение — получили ответ к первой части задачи.

Отбор корней на отрезке

Переходим ко второй части задачи и находим корни, лежащие на заданном отрезке [2π; 7π/2]. Искать корни будем с помощью тригонометрического круга.

Первым делом обозначаем все три корня на тригонометрическом круге. Кроме того, отметим концы отрезка: 2π и 7π/2. Точка 2π совпадает с точкой началом отсчета, а в числе 7π/2 давайте выделим целую часть — по аналогии с обычными дробями:

Отметим полученное число на тригонометрическом круге. Теперь проведем лучи из начала координат в каждую точку. После этого ставим маркер в точку 2π и начинаем двигаться к точке 7π/2 против часовой стрелки. Получим:

  1. Самый первый корень: 2π + π/6;
  2. Затем — второй корень: 2π + π/2;
  3. Следующий корень: 2π + 5π/6;
  4. Наконец, последний корень совпадает с концом отрезка: 7π/2.

Особенности вычисления дробных корней

Ключевой момент в решении задачи таким методом состоит в том, каким образом мы отбираем корни. В первую очередь мы ставим маркер (ручку, карандаш или что там к вас) в самый левый конец отрезка — в нашем случае это 2π. Затем мы начинаем двигаться против часовой стрелки, т. е. в положительном направлении отсчета на тригонометрическом круге.

Первая точка, которую мы встречаем на своем пути, будет x = π/6. Чтобы записать корень, мы добавляем π/6 к началу отсчета 2π — это мы и записали. Идем дальше и прибавляем π/2. Потом, если идти еще дальше, мы попадаем точку 5π/6. И когда мы дойдем до конца, то обнаружим еще один корень — точку 7π/2.

Осталось посчитать те три корня из четырех, которые мы записали в виде выражения, потому что оставлять их в таком нерассчитанном виде нехорошо. Давайте посчитаем:

С последним корнем 7π/2 никаких дополнительных преобразований проводить не нужно — он уже рассчитан. Итого при отборе корней из всего бесконечного множества, разделенного на три набора, которые мы получили при решении нашего уравнения, остались лишь четыре конкретных корня:

Заключительные выкладки

Вот и все — задача решена. Как ни странно, решение получилось довольно простым, хотя изначально уравнение выглядело весьма угрожающе: в нем есть и логарифм, и тригонометрические функции. А получилось, что любой среднестатистический ученик вполне в состоянии справится с такими уравнениями.

И это правда. Достаточно помнить два простых факта:

  1. Логарифмические уравнения мы всегда стараемся привести к каноническому виду: log_a f(x) = log_a g(x) — основания должны быть одинаковыми.
  2. Тригонометрические уравнения тоже сводятся к каноническому виду. Точнее, к одной из трех моделей: sin x = a; cos x = a; tg x = a.

Однако нашем случае на пути к каноническому виду есть одна заминка. Дело в том, что в одной из функций, а именно sin 2 x , присутствует аргумент 2 x , в то время как в cos x есть только переменная х. Следовательно, придется вспомнить формулу двойного угла: sin 2 x = 2sin x · cos x — и уже на основании этой формулы наше исходное уравнение легко раскладывается на множители, откуда возникают канонические уравнения.

В общем, все, что требуется для решения уравнений подобного вида — это научиться работать с логарифмами, выучить несколько тригонометрических формул (особенно это касается формул синуса и косинуса двойного угла) и, конечно, не бояться преобразовать наше уравнение для того, чтобы получить красивые и легко решаемые конструкции.

Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем

    Опубликовано 16.09.2020Подготовка к ЕГЭ

Решение рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений и систем

На сегодняшний день ЕГЭ по математике проходит в форме решения заданий, содержащихся в контрольно-измерительных материалах, при этом, ответы на задания выносят на отдельный бланк.

Уравнения могут быть следующих видов:

В данной статье рассмотрена профильная математика, а именно раздел по видам и системам рациональных, иррациональных, показательных, тригонометрических и логарифмических уравнений.

При решении уравнений нужно помнить основные термины:

— Корнем уравнения называют неизвестное число, которое нужно найти;

— Решение уравнения предполагает нахождение его корня;

— Уравнения, у которых совпадают решения называют равносильными;

— ОДЗ – область допустимых значений;

— Если возможно заменить переменные, то нужно это выполнить;

— После решения уравнения необходимо провести проверку на правильность нахождения корня.

Итак, рассмотрим каждый вид уравнений по отдельности, включая примеры решения.

  1. Рациональные уравнения – уравнения, у которых, как правило, слева расположено рациональное выражение, а справа – ноль.

Рациональным уравнением называют уравнение вида r(х)=0.

Если обе части уравнения являются рациональными выражениями, то рациональные уравнения называют целыми.

Дробно-рациональным называют уравнение, которое содержит дробное выражение.

Порядок действий при решении данного вида уравнения должен быть следующий:

— Все члены должны быть переведены в левую часть уравнения;

— Данную часть уравнения нужно представить в виде дроби p(x)/q(x);

— Для полученного решения нужно провести проверку, то есть.

При решение этого рационального уравнения понадобится формула (а-в)2=а2-2ав+в2.

Рассмотрим ещё один пример решения рационального уравнения:

На основе примеров показано, что рациональные уравнения могут быть с разным количеством переменных.

Иррациональными уравнениями считают уравнения с переменной под корнем. Для того, чтобы определить является ли уравнение иррациональным нужно просто посмотреть на корень переменной. Следует учитывать, что в некоторых учебниках по математике иррациональное уравнение определяют другим способом.

Способы решения таких уравнений:

— Возвести в степень обе части уравнения;

— Ввести новые переменные;

Пример решения уравнения по первому способу:

Пример решения по второму способу:

  1. Показательные уравнения

Показательные уравнения – уравнение, содержащее неизвестный показатель.

В учебниках по математике разных авторов определение показательного уравнения может отличаться. Обычно такие отличия касаются незначительных деталей.

Как правило, это уравнения вида af(x)=ag(x), где а не равно одному и число а больше нуля. Из этого следует, что f(x)=g(x).

— Уравнение с одним основанием;

— Уравнение с равными основаниями.

Существует следующие способы решения таких уравнений:

— Использовать метод логарифмов;

— Привести уравнение к квадратному виду;

— Вынести за скобку общий множитель;

— Ввести новую переменную.

Итак, как решить показательное уравнение? Любое по сложности уравнение нужно привести в простую форму.

Рассмотрим наиболее простой пример решения показательного уравнения:

Для решения данного уравнения следует 2 возвести во вторую степень.

Решение даже простейших показательных уравнений имеет большую значимость. Поэтому далее вам будет легче решать уравнения более сложного уровня.

Данная тема является одной из самых сложных, поэтому следует внимательно подойти к изучению данной темы. Известны три формулы тригонометрических уравнений, запомнить которые не составляет особой сложности.

Наиболее простое тригонометрическое уравнение имеет вид sin x=a, cos x=a, tg x=а, а – число действительное.

Способы решения таких уравнений:

— Решение с помощью форму и приведение к простейшему;

— Ввод других переменных;

— Разложить уравнение по множителям.

Пример решения тригонометрического уравнения:

Здесь нужно рисовать окружность, далее выделить точки с координатой ½, соответственно, это точки 5п/6 и п/6. Если пройти по окружности, исходя из данных точек, то х=п/6+2пk, x=5п/6+2пn. При этом синус и косинус принадлежат промежутку [-1;1]. Если при решении уравнения в его правой части стоит число не принадлежащее промежутку, считается, что уравнение не имеет решения.

Также рассмотрим пример решения уравнения, разложив его по множителям.

Нужно применить формулу sin2x = 2sinxcosx.

2sinxcosx – sinx = 0.

sinx (2cosx – 1) = 0.

Таким образом, если один из множителей равен нулю, то решение уравнения также равно нулю.

Далее, sinx=0, x=пk.

  1. Логарифмические уравнения

Особое значение имеет подготовка ЕГЭ по математике логарифмы, это обусловлено тем, что в КИМах чаще всего встречаются именно этого вида уравнения.

Логарифмическое уравнение – это уравнение с неизвестной величиной, находящейся внутри логарифма.

Примерами логарифмических уравнений являются уравнения следующего вида:

Способы решения уравнений данного вида:

— Применять способ уравнивания к единице;

— Применять способ умножать на единицу;

— Применять доступные правила логарифмов;

— Введение другого основания;

— Возвести в степень.

Самым простым логарифмическим уравнением принято считать уравнение вида log a x = b, при этом основание a>0,a≠1.

Пример решения уравнения:

Сначала следует найти значение области, то есть ОДЗ. При этом нужно помнить, что под логарифмом выражение всегда положительное. Воспользуемся логарифмическим определением, представим х степью основания 2 логарифма, степень будет равна 3.

Решение уравнения является ОДЗ, то есть корень уравнения найден.

Таким образом, подобное задание ЕГЭ по математике легко можно решить, зная логарифмы и способы их решения.

Оставить Комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Выбери тему

Самые популярные записи

  • Наука. Основные особенности научного мышления. Естественные и социально гуманитарные науки (3 401)
  • Строение растения. Стебель, лист и цветок. (2 295)
  • ЕГЭ по обществознанию: мышление и деятельность; потребности и интересы (2 276)
  • Свобода и необходимость в человеческой деятельности. Свобода и ответственность. (2 237)

StudyWay

Помощь

© 2021 StudyWay. Все права защищены.

Ты можешь попробовать 3 наших закрытых занятия из курса «Прорыв».
Записаться можно через Instagram

Для этого напиши в Direct (в личку) кодовое слово «Пробный«

Что за курс и что тебя там будет ждать?

12 мощнейших онлайн занятий по 2 часа в формате вебинаров.
Содержание вебинара: повторение предыдущей темы, теория, перерыв и практика.

Воркбук (рабочая тетрадь)абсолютно к каждому уроку со всей необходимой теорией к этой теме и практикой.

Личный куратор это твой помощник во всех учебных вопросах.
Они занимаются проверкой твоих домашних заданий, поддерживают и мотивируют двигаться дальше, даже когда хочется сдаться.

На собственной онлайн платформе тебя ждут
Домашние задания, которые необходимо решать после каждого занятия.
Все задания построены на базе создателей ЕГЭ — Котова / Лискова.

К каждому тестовому вопросу будет подробный разбор от главного куратора.
А задания, где необходимо оценить ответ (вторая часть) — будет проверять твой личный куратор и писать подробный комментарий про ошибки

Общий чат единомышленников, поделенный на команды.
Название даете совместно (например «Воробушки»)

Ты будешь двигаться сообща с однокурсниками, поддерживая и мотивируя друг друга.
За лучшую командную успеваемость всей команде будут выделены призы в конце каждого месяца (скидка на обучение, стикерпаки и т.д).

Личный помощник — это твой верный друг и помощник, который поможет тебе со всеми техническими вопросами, ответит на вопросы про поступление, да и просто может обсудить какие-то личные вопросы, поделиться переживаниями.

Доступ к уникальной «Академии косатиков».

Там ты сможешь найти:
Банк теории, банк планов, банк аргументов, курсы по работе со всей второй частью, термины, курсы по саморазвитию, полезные лайфхаки и всю подробную информация о ЕГЭ.

Игровая система на нашей платформе StudyWay👇

За выполнение заданий получаешь баллы (XP).

При достижении нового уровня у тебя открываются новые персонажи из Marvel, DC Comics, Игра престолов и Star Wars, а также на каждом новом уровне тебя ждут призы от нашей школы.

Основная ценность курса
1. Изучение теории и практики с учетом изменений в ЕГЭ 2022
2. Заложение фундамента и основы предмета
3. Прохождение всей теории для первой части
4. Нарешивание всех возможных типов заданий
5. Повышение результата с 0 до 60 баллов

Отличия тарифа «Стандарт от «Профи».

Дополнительные домашние задания
необходимо выполнять. Это значительно повысит твою успеваемость и улучшит показатели.

Дополнительное объяснение
твой личный куратор объяснит тебе тему повторно, если останется что-то не понятным

Групповые зачеты
у тебя будут зачеты с твоим личным куратором в мини группах по 5 человек. Там спрашиваются пройденные темы, термины и так далее.

Карта памяти
будешь восполнять все пройденные в удобной интеллект карте и в конце учебы у тебя выйдет файл с полноценной теорией по всем темам и разделам.

Персональный звонок куратору
1 раз в месяц ты можешь позвонить своему куратору и обсудить все волнующие тебя вопросы в течении 20 минут.

Секретный квест
1 раз в месяц ты будешь созваниваться с другим учеником курса и проводить совместные зачеты, тем самым познакомишься с новыми ребятами из других городов, уберешь страхи знакомства, повторишь и закрепишь пройденные темы.

Примеры решения иррациональных, тригонометрических, логарифмических и других уравнений, решаемых нетрадиционными методами

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

ПРИМЕРЫ РЕШЕНИЯ УРАВНЕНИЙ С ПРИМЕНЕНИЕМ НЕКОТОРЫХ ОРИГИНАЛЬНЫХ ПРИЕМОВ.

1
. Решение иррациональных уравнений.

1.1.1 Решите уравнение .

Заметим, что знаки х под радикалом различные. Введем обозначение

, .

Тогда,

Выполним почленное сложение обеих частей уравнения .

Имеем систему уравнений

Т.к. а + в = 4, то

Значит: 9 – x = 8  х = 1. Ответ : х = 1.

1.1.2. Решите уравнение .

Введем обозначения: , ; , .

Значит:

Сложив почленно левую и правую части уравнений, имеем .

Имеем систему уравнений

а + в = 2, , , ,

.

Вернемся к системе уравнений:

, .

Решив уравнение относительно (ab), имеем ab = 9, ab = -1 (-1 посторонний корень, т.к. , .).

Данная система не имеет решений, значит, исходное уравнение также не имеет решения.

Ответ : нет решений.

Решите уравнение: .

Введем обозначение , где . Тогда , .

, ,

.

Рассмотрим три случая:

1) . 2) . 3) .

— а + 1 — а + 2 = 1, а — 1 — а + 2 = 1, а — 1 + а — 2 = 1, a = 1, 1  [ 0;1 ). [ 1 ; 2 ). а = 2.

Если , то , , .

Ответ: .

1.2. Метод оценки левой и правой частей (метод мажорант).

Метод мажорант – метод нахождения ограниченности функции.

Мажорирование – нахождение точек ограничения функции. М – мажоранта.

Если имеем f(x) = g(x) и известно ОДЗ, и если

, , то

Решите уравнение: .

ОДЗ: .

Рассмотрим правую часть уравнения.

Введем функцию . Графиком является парабола с вершиной А(3 ; 2 ).

Наименьшее значение функции у(3) = 2, то есть .

Рассмотрим левую часть уравнения.

Введем функцию . С помощью производной нетрудно найти максимум функции, которая дифференцируема на x  ( 2 ; 4 ).

.

при ,

,

, x=3.

g` + —

2 3 4

Имеем, .

В результате , , то

Составим систему уравнений , исходя из вышеуказанных условий :

Решая первое уравнение системы , имеем х = 3. Подстановкой этого значения во второе уравнение, убеждаемся, что х = 3 есть решение системы.

1.3. Применение монотонности функции.

1.3.1. Решите уравнение :

ОДЗ : , т.к . .

Известно, что сумма возрастающих функций есть функция возрастающая.

Левая часть представляет собой возрастающую функцию. Правая часть – линейная функция (к=0). Графическая интерпретация подсказывает, что корень единственный. Найдем его подбором, имеем х = 1.

Предположим имеется корень х1 , больший 1, тогда выполняется

, т.к. х1 >1,

,

,

.

.Делаем вывод, что корней больших единицы нет.

Аналогично, можно доказать, что нет корней, меньших единицы.

Значит x=1 – единственный корень.

1.3.2. Решите уравнение:

ОДЗ: [ 0,5 ; +  ), т.к . т.е. .

Преобразуем уравнение ,

,

.

Левая часть представляет собой возрастающую функцию ( произведение возрастающих функций ), правая часть – линейная функция ( к = 0). Геометрическая интерпретация показывает, что исходное уравнение должно иметь единственный корень, который можно найти подбором, х = 7.

Проверка:

Можно доказать, что других корней нет( см. пример выше).

Метод оценки левой и правой частей.

Дадим оценку левой части уравнения.

2х — х 2 + 15 = — (х 2 — 2х — 15 ) = — ( ( х 2 — 2х + 1 ) — 1 — 15 ) = — ( х — 1 ) 2 + 16  16.

Тогда log2 (2х — х 2 + 15 )  4.

Оценим правую часть уравнения.

x 2 — 2х + 5 = (х 2 — 2х + 1 ) — 1 + 5 = (х — 1) 2 + 4  4.

Исходное уравнение может иметь решение только при равенстве обеих частей четырем.

значит

Для самостоятельной работы.

2.1.2. log4 (6х — х 2 + 7 ) = х 2 — 6х + 11 Отв.: х = 3.

2.1.3. log5 ( 8x — x 2 + 9 ) = x 2 — 8x + 18 Отв.: х = 6.

2.1.4. log4 (2x — x 2 + 3 ) = x 2 — 2x + 2 Отв.: х = 1.

2.1.5. log2 ( 6x — x 2 — 5 ) = x 2 — 6x + 11 Отв.: х = 3.

2.2. Использование монотонности функции, подбор корней.

Выполним замену 2x — x 2 + 15 = t, t>0. Тогда x 2 — 2x + 5 = 20 — t, значит

Функция y = log2 t — возрастающая, а функция y = 20 — t — убывающая. Геометрическая интерпретация дает нам понять, что исходное уравнение имеет единственный корень, который нетрудно найти подбором t = 16.

Решив уравнение 2х — х 2 + 15 = 16, находим, что х = 1.

Проверкой убеждаемся в верности подобранного значения.

2.3. Некоторые “интересные” логарифмические уравнения.

2.3.1. Решите уравнение .

ОДЗ: ( x — 15 ) cosx > 0.

Перейдем к уравнению

, , ,

.

Перейдем к равносильному уравнению

(x — 15) (cos 2 x — 1) = 0,

x — 15 = 0, или cos 2 x = 1 ,

x = 15. cos x = 1 или cos x = -1,

x = 2  k, k  Z . x =  + 2  l, l  Z.

Проверим найденные значения, подставив их в ОДЗ.

1) если x = 15 , то (15 — 15) cos 15 > 0,

x = 15 – не является корнем уравнения.

2) если x = 2  k, k  Z, то (2  k — 15) l > 0,

2  k > 15, заметим, что 15  5  . Имеем

3) если x =  + 2  l, l  Z, то (  + 2  l — 15 ) ( — 1 ) > 0,

2  l  , заметим, что 15  5  .

Ответ: х = 2  k (k = 3,4,5,6,…); х =  +2  1(1 = 1,0, -1,- 2,…).

3.1. Метод оценки левой и правой частей уравнения.

4.1.1. Решите уравнение cos3x cos2x = -1.

0,5 ( cos x + cos 5 x ) = -1, cos x + cos 5 x = -2.

Поскольку cos x  — 1 , cos 5x  — 1, заключаем,­ что cos x + cos 5x > -2, отсюда

следует система уравнений

cos x = -1,

Решив уравнение cos x = -1, получим х =  + 2  к ,где k  Z.

Эти значения х являются также решениями уравнения cos 5x = -1, т.к.

cos 5 x = cos 5 (  + 2  k) = cos (  + 4  + 10  k) = -1.

Таким образом , х =  + 2  к , где k  Z , — это все решения системы, а значит и исходного уравнения.

Ответ: х =  ( 2k + 1 ), k  Z.

Можно показать, что из исходного уравнения следует совокупность систем

cos 2 x = — 1,

cos 2 x = 1,

Решив каждую систему уравнений , найдем объединение корней.

Ответ: x = ( 2  к + 1 ), k  Z.

Для самостоятельной работы.

3.1.2. 2 cos 3x + 4 sin x/2 = 7. Ответ: нет решений.

3.1.3. 2 cos 3x + 4 sin x/2 = -8. Ответ: нет решений.

3.1.4. 3 cos 3x + cos x = 4. Ответ: х = 2 к, k Z.

3.1.7. cos 3x + cos 5x/2 = 2.

Поскольку  cos 3x   1 и  cos 5x/2   1 , то данное уравнение равносильно системе

cos 3 x = 1, x = 2  n / 3,

cos 5 x /2 = 1; x = 4  k / 5.

Ответ: 4  m, m  Z.

3.1.8. cos 2x + cos 3 x / 4 — 2 = 0. Ответ: 8 к, k Z .


источники:

http://thestudyway.com/education_ege/logarifmicheskie_trigonometricheskie_sistemy/

http://infourok.ru/primeri-resheniya-irracionalnih-trigonometricheskih-logarifmicheskih-i-drugih-uravneniy-reshaemih-netradicionnimi-metodami-1012411.html