Решения уравнений 10 12 класс

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №12. Решение алгебраических уравнений разложением на множители.

Перечень вопросов, рассматриваемых в теме

1) типы алгебраических уравнений;

2) решение алгебраические уравнения методом разложения на множители;

3) методы решения алгебраических уравнений.

Глоссарий по теме

Алгебраическое уравнение (полиномиальное уравнение) — уравнение вида P(x1, x2, …, xn)=0, где P — многочлен от переменных x1, x2, …, xn, которые называются неизвестными.

Коэффициенты многочлена P обычно берутся из некоторого множества F, и тогда уравнение P(x1, x2, …, xn)=0 называется алгебраическим уравнение над множеством F.

Степенью алгебраического уравнения называют степень многочлена P.

Значения переменных x1, x2, …, xn, которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.

Биквадратными называются уравнения вида ах 4 + bх 2 + с = 0, где а, b, с – заданные числа, причем, а ≠ 0.

Симметрическим уравнением 3-ей степени называют уравнение вида: ax 3 + bx 2 + bx + a = 0, где a, b – заданные числа.

Уравнение вида a n x n +a n-1 x n-1 +…+a 1 x+a 0 =0 называется возвратным, если его коэффициенты, стоящие на симметричных позициях, равны, т.е. a n-1 =a k , при k=0, 1, …, n.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Давайте вспомним, что такое алгебраическое уравнение?

Алгебраическое уравнение (полиномиальное уравнение) — уравнение вида P(x1, x2, …, xn)=0, где P — многочлен от переменных x1, x2, …, xn, которые называются неизвестными.

Коэффициенты многочлена P обычно берутся из некоторого поля F, и тогда уравнение P(x1, x2, …, xn)=0 называется алгебраическим уравнение над полем F.

Степенью алгебраического уравнения называют степень многочлена P.

является алгебраическим уравнением седьмой степени от трёх переменных (с тремя неизвестными) над полем вещественных чисел.

Связанные определения. Значения переменных x1, x2, …, xn, которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.

Примеры и разбор решения заданий тренировочного модуля

  1. Алгебраические уравнения, решаемые разложением на множители:

D(–2) : ,

Можно догадаться, что число х1 = –1 является корнем этого уравнения, так как –1 + 3 – 2 = 0.

х + 1 = 0 или х 2 –х–2 = 0;

х1 = –1 х2,3 = ;

х2,3 = ;

x 3 + х 2 – х 2 – х – 2x – 2 = 0;

(x 3 + х 2 ) – (х 2 + х) – 2(x + 1) = 0;

х 2 (х + 1) – х(х + 1) – 2(х + 1) = 0;

(х + 1) (х + 1) (х –2) = 0;

(х –2) = 0;

  1. Уравнения, сводящиеся к алгебраическим
    1. Биквадратные уравнения

На прошлом уроке мы познакомились с данным видом уравнений

Определение. Биквадратными называются уравнения вида ах 4 + bх 2 + с = 0, где а, b, с – заданные числа, причем, а ≠ 0.

Метод решения

Биквадратное уравнение приводится к квадратному уравнению при помощи подстановки у=х 2 .

Новое квадратное уравнение относительно переменной у: ay 2 +by+c=0.

Решая это уравнение, мы получаем корни квадратного уравнения

Решая эти два уравнения (y1=x1 2 и y2=x1 2 ) относительно переменной x, мы получаем корни данного биквадратного уравнения.

Порядок действий при решении биквадратных уравнений

  1. Ввести новую переменную у=х 2
  2. Подставить данную переменную в исходное уравнение
  3. Решить квадратное уравнение относительно новой переменной
  4. После нахождения корней (y1; y2) подставить их в нашу переменную у=х 2 и найти исходные корни биквадратного уравнения

х 4 – 8х 2 – 9 = 0.

Решение: Пусть у = х 2 , где у 0; у 2 – 8у – 9 = 0;

По формулам Виета:

Первое решение отбрасываем ( у 0),

а из второго находим х1 = –3; х2 = 3.

2 Симметрические уравнения

Решение симметрических уравнений рассмотрим на примере симметрических уравнений третьей степени.

Симметрическим уравнением 3-ей степени называют уравнение вида ax 3 + bx 2 + bx + a = 0, где a, b – заданные числа.

Для того, чтобы успешно решать уравнения такого вида, полезно знать и уметь использовать следующие простейшие свойства симметрических уравнений:

1 0 . У любого симметрического уравнения нечетной степени всегда есть корень, равный -1.

Действительно, если сгруппировать в левой части слагаемые следующим образом: а(х 3 + 1) + bx(х + 1) = 0, то есть возможность вынести общий множитель, т.е.

(х + 1)(ах 2 + (b – а)x + а) = 0, поэтому,
х + 1 = 0 или ах 2 + (b – а)x + а = 0,

первое уравнение и доказывает интересующее нас утверждение.

2 0 . У симметрического уравнения корней, равных нулю, нет.

3 0 . При делении многочлена нечетной степени на (х + 1) частное является снова симметрическим многочленом.

х 3 + 2x 2 + 2х + 1 = 0.

Решение: У исходного уравнения обязательно есть корень х = –1.

Разлагая далее левую часть на множители, получим

(х + 1)(x 2 + х + 1) = 0.

x 2 + х + 1 = 0 не имеет корней.

2 Возвратные уравнения

Уравнение вида a n x n +a n-1 x n-1 +…+a 1 x+a 0 =0 называется возвратным, если его коэффициенты, стоящие на симметричных позициях, равны, т.е. a n-1 =a k , при k=0, 1, …, n.

Рассмотрим возвратное уравнение четвёртой степени вида

ax⁴ + bx³ + cx² + bx + a = 0, где a, b и c — некоторые числа, причём a ≠ 0. Оно является частным случаем уравнения ax⁴ + bx³ + cx² + kbx + k²a = 0 при k = 1.

Порядок действий при решении возвратных уравнений вида ax 4 + bx 3 + cx 2 + bx + a = 0:

  • разделить левую и правую части уравнения на . При этом не происходит потери решения, так как x = 0 не является корнем исходного уравнения;
  • группировкой привести полученное уравнение к виду

  • ввести новую переменную , тогда выполнено
    , то есть ;

в новых переменных рассматриваемое уравнение является квадратным: at 2 +bt+c–2a=0;

  • решить его относительно t, возвратиться к исходной переменной.

Решение: Разделим на x 2 , получим:

Введем замену:
Пусть

Показательные уравнения. 10-й класс

Разделы: Математика

Класс: 10

Учебник: Колягин Ю. М. Алгебра и начала математического анализа. 10 класс. Москва, «Просвещение», 2014.

Урок проведён в универсальном 10-м классе средней общеобразовательной школы.

Цели урока: изучение способов решения показательных уравнений, тренировка в применении полученных знаний при решении заданий по теме, развитие творческой и мыслительной деятельности учащихся, формирование умения чётко и ясно излагать свои мысли, формирование познавательных интересов и мотивов самосовершенствования, воспитание умения работать с имеющейся информацией и культуры труда.

Структура урока

1. Организационный этап. Постановка темы и цели урока

– Прочитайте тему сегодняшнего урока (Приложение 1, слайд № 1)
– «Показательные уравнения».
– Нам это уже известно или это новый вид уравнений?
– Это новый вид уравнений.
– Попробуйте сформулировать цели урока.
– Мы узнаем, какие уравнения называются показательными, изучим способы их решения и будем учиться применять новое знание при решении задач по теме.
Учитель корректирует ответы учащихся.

2. Актуализация знаний. Устная работа (слайд № 3)

  1. Подберите корень уравнения 2 х = 32; 3 х = 27; 10 х = 10000
  2. Решите уравнение х 2 = 36; х 2 + х = 0; х 2 + 2х + 1 = 0
  3. Найдите область значений функции у = π х ; у = (0,5) х ; у = (0,5) |х|
  4. Сравните, используя свойства функций, с единицей 2 – 5 ; (0,5) – 3 ; (0,5) 0,5

3. Изучение нового материала (лекция)

Уравнение, в котором неизвестное содержится в показателе степени, считается показательным (слайд № 4). Рассмотрим основные виды показательных уравнений (слайд № 5) (учащиеся записывают названия видов и примеры в тетрадях).

1. Элементарные показательные уравнения. Эти уравнения сводятся к решению уравнений вида а х = а в , где а >0, а ≠ 1. При этом используется свойство степени, которое мы изучали (повторить следствие 2 на стр. 160 учебника). Рассмотрим примеры решения таких уравнений.

Пример 1 (слайд № 6).

(0,0016) 0,2 х + 1 = 25;
5 – 4 (0,2 х + 1) = 52;
– 0,8 х – 4 = 2;
– 0,8 х = 6;
х = – 7,5 .

Пример 2 (слайд №7)

36 · 6 х = 1;
6 2 + х = 60;
2 + х = 0;
х = – 2.

Пример 3 (слайд №8)

81 х · 2 4х = 36;
3 4х · 2 4х = 62;
6 4х = 6 2 ;
4х = 2;
х = 0,5.
Ответ: 0,5.

Пример 4 (слайд № 9)

2 х – 3 = 3 х – 3 ;
х – 3 = 0;
х = 3.
Ответ: 3.

2. Вынесение общего множителя за скобки (слайд № 10). Рассмотрим примеры решения таких уравнений.

2 · 3 х + 1 – 6 · 3 х – 1 – 3 х = 9;
3 х (2 · 3 – 6 · 3 – 1 – 1) = 9;
3 х · 3 = 9;
3 х = 3;
х = 3.
Ответ: 3.

Пример 2 (слайд № 11).

5 2х – 7 х – 5 2х · 17 + 7 х · 17 = 0;
5 2х – 5 2х · 17 = 7 х – 7 х · 17;
5 2х (1 – 17) = 7 х (1 – 17);
– 16· 52х = – 16 · 7х;
5 2х = 7 х ;
25 х = 7 х ;
х= 0.
Ответ: 0.

3. Сведение к квадратному уравнению (слайд № 12). Рассмотрим примеры решения таких уравнений.

9 х – 4 · 3 х = 45;
3 2х – 4 · 3 х – 45 = 0;
Замена 3 х = t, t > 0;
t 2 – 4 t – 45 = 0;
D = 16 +180 = 196;
t1 = 9,
t2 = – 5 – не удовлетворяет условию t > 0;
3 х = 9;
3 х = 32;
х = 2;
Ответ: 2.

4. Закрепление изученного материала

– Продолжаем учиться решать показательные уравнения. (Решение всех последующих уравнений записывается на доске с объяснениями, следует вызвать ученика по желанию). Разберём №680(3), 681(1), 682(3), 684(1), 693(2).

5. Обучающая самостоятельная работа с самопроверкой

– Предлагаю вам самостоятельно решить следующие уравнения (слайд № 13), а затем проверить себя самостоятельно с помощью готовых решений (решение уравнений следует заранее заготовить, например, на слайдах, а затем показать учащимся по окончании работы).

  1. (0,3) 5 – 2х = 0,09;
  2. 225 · 15 2х + 1 = 1;
  3. 3 х + 1 – 3 х = 18;
  4. 9 х – 26 · 3 х – 27 = 0

Решение № 1 (слайд № 14)

Решение № 2 (слайд № 15)

15 2 · 15 2х + 1 = 150;
152х + 3 = 150;
2х + 3 = 0;
х = – 1,5.
Ответ: – 1,5.

Решение № 3 (слайд № 16)

3 х · 3 – 3 х = 18;
3 х (3 – 1) = 18;
3 х · 2 = 18;
3 х = 9;
3 х = 3 2 ;
х = 2.
Ответ: х = 2.

Решение № 4 (слайд № 17)

3 2х – 26 · 3 х – 27 = 0;
Замена 3 х = t, t > 0;
t 2 – 26 t – 27 = 0;
t1 = 27,
t2 = – 1 не удовлетворяет условию t > 0;
3 х = 27; 3 х = 3 3 ; х = 3;
Ответ: 3.

6. Подведение итога урока. Рефлексия

– Итак, подведём итоги проделанной работы. Что нового вы узнали?
– С какими видами показательных уравнений мы познакомились?

7. Домашнее задание (слайд № 18)

Решения уравнений 10 12 класс

Пример 5. Решите уравнение 3у + у 2 = у.
Решение:
3у + у 2 = у – неполное квадратное уравнение; у 2 + 3у – у = 0;
у 2 + 2у =0; у∙(у + 2) = 0.

x 2 – 5х = – 6 или х 2 – 5х = 36;
х 2 – 5х + 6 = 0 или х 2 – 5х – 36 =0.
По теореме Виета:
х1 = 2, х2 = 3, х3 = – 4, х4 =9.
Ответ: – 4, 2, 3, 9.


источники:

http://urok.1sept.ru/articles/652984

http://www.sites.google.com/a/ssga.ru/ssga4school/matematika/tema-3