Решения уравнений способом выделение квадрата

Тема урока: «Решение квадратных уравнений выделением квадрата двучлена». 8-й класс

Разделы: Математика

Класс: 8

Цели урока:

  • освоить способ выделения квадрата двучлена из квадратного трехчлена, заданного в стандартном виде; конструировать решения квадратного уравнения способом выделения квадрата двучлена;
  • воспитывать познавательную активность, чувства ответственности и товарищества, культуры общения;
  • развивать логическое мышление для сознательного восприятия учебного материала

Оборудование:

  • план,
  • проектор,
  • компьютерная презентация,
  • учебное пособие «Алгебра-8» под редакцией Теляковского С.А.,
  • дидактические материалы по алгебре для 8 класса (В. И. Жохов, Ю. Н. Макарычев, Н. Г. Миндюк),
  • таблицы устных упражнений,
  • карточки-задания,
  • исторические сведения,
  • стенгазета,
  • алгоритм решения квадрат­ного уравнения выделением квадрата двучлена, магнитофон.

I . Ориентировочно-мотивационный этап

Проверка домашнего задания через консультантов. Актуализация знаний.

Выполнение заданий творческого характера на доске.

1) (2 – 5х) 2 = 9 (Ответ: – 0,2; 1.)

2) х 2 – 4 | х | = 0,
| х | = а, а > 0,
а 2 – 4а = 0,
а(а – 4) = 0, а = 0 или а – 4 = 0,
а = 4,

| x | = 0, х = 0, | x | = 4, х = 4 или х = – 4. Ответ: – 4; 0; 4.

3) | 3x 2 + 5x – 4 | = 3x 2 + 4

3х 2 + 4 > 0 верно при любых значениях переменной х

а) 3х 2 + 5х – 4 = 3х 2 + 4, б) 3х 2 + 5х – 4 = – 3х 2 – 4,
5х = 8, х = 1,6 6х 2 + 5х = 0, х(6х + 5) = 0, х = 0, х = –
Устная работа. Теоретическая изюминка (презентация)

1) Какие уравнения вы знаете? (Линейные, квадратные)
2) Определение квадратного уравнения. Почему а ≠ 0?
3) Вспомните классификацию квадратных уравнений ( полные ,неполные , приведенные)
4) Какое уравнение называется неполным? Виды неполных квадратных уравнений.
5) Сколько корней имеет неполное квадратное уравнение каждого вида?
6) Д/м, стр. 23, 1,2 задание
7) (а + в) 2 = а 2 + 2ав + в 2 – квадрат суммы двух выражений . Замените * одночленом так, чтобы получившееся равенство было тождеством:
а) ( * + 2в ) 2 = а 2 + 4ав + 4в 2
б) (15 + * ) 2 = 225у 2 + 1 2х 3 у + 0,16х 6
в) (3а – 2,5в) 2 = 9а 2 + 6,25в 2 – *

II. Операционально-исполнительный этап

Определение приведенного квадратного уравнения:

Квадратное уравнение ах 2 + вх + с = 0 с первым коэффициентом а = 1 называется приведенным

1) Определите вид уравнения х 2 + 2х + 1= 0 и решите это уравнение

(х + 1) 2 = 0,
х + 1= 0, х = – 1.

– Каким способом вы решили?

2) Нельзя ли решить уравнение х 2 + 6х – 7 = 0 таким же способом? (Ответ учащихся: «Нужно выделить квадрат двучлена» )
– Сформулируйте учебную задачу нашего урока. (Ответ учащихся: «Учебная задача урока «Решение квадратного уравнения выделением квадрата двучлена» )
– Итак, мы определили задачу нашего урока: научиться решать квадратные уравнения выделением квадрата двучлена.

3) Выделите квадрат двучлена: х 2 + 6х – 7 = х 2 + 2х * 3 + 9 – 9 – 7 = (х + 3) 2 – 16

4) Решите уравнение

х 2 + 6х – 7 = 0,
(х + 3) 2 – 16 = 0, (х + 3) 2 = 16
х + 3 = 4 или х + 3 = – 4
х = 1 или х = – 7
Ответ: – 7; 1.

Проговаривание способа решения уравнения.

Алгоритм решения квадратных уравнений выделением квадрата двучлена (презентация)

а) определяем первое выражение;
б) находим второе выражение: выражение с переменной (т.е. удвоенное произведение двух выражений ) делим на удвоенное первое выражение
в) прибавим и отнимем квадрат второго выражения;
г) упростим выражения, выделив квадрат двучлена;
д) решаем как неполное квадратное уравнение.

5) Решите уравнение х 2 – 5х + 10 = 0,

х 2 – 2х* 5/2 + (5/2) 2 – (5/2) 2 + 10 = 0,
(х – 5/2 ) 2 = – 15/4, нет корней.

6) Ребята, как вы думаете, можно ли решить выделением квадрата двучлена следующее уравнение 2х 2 – 9х + 10 = 0, 5х 2 + 3х – 8 = 0? (Можно, но сначала надо разделить каждый член уравнения на 2 (5), так как а = 2 (а = 5))

а) х 2 – (9/2)х + 5 = 0, б) х 2 + (3/5)х – (8/5) = 0

Решите данные уравнения в парах.

(Проверка по образцу).

б) х 2 + 2х * 3/10 + 9/100 – 9/100 – 8/5 = 0,
(х + 3/10) 2 = 169/100,
| x + 3/10 | = 13/10,
х + 3/10 = 13/10 или х + 3/10 = –13/10,
х = 1 или х = – 1,6
Ответ: – 1,6; 1.

Проговаривание решения квадратного уравнения в парах.

Самостоятельная работа

а) х 2 – 4х + 4 = 0 , б) х 2 + 12х + 20 = 0
(х = 2) (х = – 2; х = – 10)

а) х 2 + 14х + 49 = 0, б) х 2 – 8х – 9 = 0
(х = – 7) (х = – 1; х = 9)

а) х 2 – х + = 0, б) 5y 2 – 6y + l = 0,
(х = ) (х = 1; х = )

а) у 2 – у + 1 = 0, б) 5х 2 – 8х + 3 = 0
(х = 2) (х = 1; х = 0,6 )

(Во время самостоятельной работы звучит классическая музыка) Взаимопроверка.
Учащиеся выставляют оценки карандашом.

Физминутка для глаз (компьютерная презентация)

7) При каком значении а уравнение х 2 + 12х + 36 = а имеет 2 корня, 1 корень, не имеет корней?
(х + 6) 2 = а при а > 0 , 2 корня ;
при а = 0, 1 корень;
при а 2 – 4х + 5 = m?
х 2 – 2х * 2 + 4 – 4 + 5 = m,
(х – 2) 2 + 1 = m,
(х – 2) 2 = m – 1,
при m > 1, 2 корня;
при m = 1, 1 корень.

9) Решите уравнение: у 2 – 4| y | – 96 = 0.
Пусть | y | = b, b > 0,
b 2 – 4b – 96 = 0,
b 2 – 2b* 2 + 4 – 4 – 96 = 0,
(b – 2) 2 = 100,
| b – 2 | = 10,
b – 2 = 10 или b – 2 = – 10,
b = 12 или b = – 8.
b = – 8 не удовлетворяет условию b > 0,
| у | = 12,
y = 12 или у = – 12.

Домашняя работа

№526 – обязательный уровень;
№528, С-24, №7 – повышенный уровень;

Творческая работа

а) Заполни «окошки» х 2 – 7х + 8 = (х – ∆) 2 + 8 – ∆ 2 2 и придумать самим такие задания.
б) Выделить квадрат двучлена из квадратного трехчлена ах 2 + вх + с = 0.

III. Рефлексивно-оценочный этап

– Что изучали на уроке?
– Как решали квадратные уравнения?
– Что вы знаете об истории возникновения квадратных уравнений?

Задачи на квадратные уравнения встречались уже в 499 году в Древней Индии. Часто они были в стихотворной форме. Вот одна из задач знаменитого индийского математика 12 века Бхаскары:

«Обезьянок резвых стая
Всласть поевши развлекалась,
Их в квадрате часть восьмая
На поляне забавлялась,
А 12 по лианам…
Стали прыгать, повисая,
Сколько было обезьянок,
Ты скажи мне, в этой стае?

Уже в то время он знал о двузначности корней квадратных уравнений (х/8) 2 + 12 = х.
Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанная в 1202 году итальянским математиком Леонардом Фибоначчи. И лишь в 17 веке , благодаря трудам Жирара, Декарта, Ньютона и других ученых , способ решения квадратных уравнений принимает современный вид , о котором мы с вами будем говорить на следующем уроке.

Решения уравнений способом выделение квадрата

Описание метода выделения полного квадрата

§2. Выделение полного квадрата из квадратного трёхчлена

Описание метода выделения полного квадрата

Выражения вида 2 x 2 + 3 x + 5 , `-4x^2+5x+7` носят название квадратного трёхчлена. В общем случае квадратным трёхчленом называют выражение вида a x 2 + b x + c , где a , b , c a, b, c – произвольные числа, причём a ≠ 0 .

Рассмотрим квадратный трёхчлен x 2 — 4 x + 5 . Запишем его в таком виде: x 2 — 2 · 2 · x + 5 . Прибавим к этому выражению 2 2 и вычтем 2 2 , получаем: x 2 — 2 · 2 · x + 2 2 — 2 2 + 5 . Заметим, что x 2 — 2 · 2 · x + 2 2 = ( x — 2 ) 2 , поэтому

x 2 — 4 x + 5 = ( x — 2 ) 2 — 4 + 5 = ( x — 2 ) 2 + 1 .

Преобразование, которое мы сделали, носит название «выделение полного квадрата из квадратного трёхчлена».

Выделите полный квадрат из квадратного трёхчлена 9 x 2 + 3 x + 1 .

Заметим, что 9 x 2 = ( 3 x ) 2 , `3x=2*1/2*3x`. Тогда

Прибавим и вычтем к полученному выражению `(1/2)^2`, получаем

Покажем, как применяется метод выделения полного квадрата из квадратного трёхчлена для разложения квадратного трёхчлена на множители.

Разложите на множители квадратный трёхчлен 4 x 2 — 12 x + 5 .

Выделяем полный квадрат из квадратного трёхчлена:

2 x 2 — 2 · 2 x · 3 + 3 2 — 3 2 + 5 = 2 x — 3 2 — 4 = ( 2 x — 3 ) 2 — 2 2 .

Теперь применяем формулу a 2 — b 2 = ( a — b ) ( a + b ) , получаем:

( 2 x — 3 — 2 ) ( 2 x — 3 + 2 ) = ( 2 x — 5 ) ( 2 x — 1 ) .

Разложите на множители квадратный трёхчлен — 9 x 2 + 12 x + 5 .

— 9 x 2 + 12 x + 5 = — 9 x 2 — 12 x + 5 . Теперь замечаем, что 9 x 2 = 3 x 2 , — 12 x = — 2 · 3 x · 2 .

Прибавляем к выражению 9 x 2 — 12 x слагаемое 2 2 , получаем:

— 3 x 2 — 2 · 3 x · 2 + 2 2 — 2 2 + 5 = — 3 x — 2 2 — 4 + 5 = — 3 x — 2 2 + 4 + 5 = = — 3 x — 2 2 + 9 = 3 2 — 3 x — 2 2 .

Применяем формулу для разности квадратов, имеем:

— 9 x 2 + 12 x + 5 = 3 — 3 x — 2 3 + ( 3 x — 2 ) = ( 5 — 3 x ) ( 3 x + 1 ) .

Разложите на множители квадратный трёхчлен 3 x 2 — 14 x — 5 .

Мы не можем представить выражение 3 x 2 как квадрат какого-то выражения, т. к. ещё не изучали этого в школе. Это будете проходить позже, и уже в Задании №4 будем изучать квадратные корни. Покажем, как можно разложить на множители заданный квадратный трёхчлен:

Покажем, как применяется метод выделения полного квадрата для нахождения наибольшего или наименьшего значений квадратного трёхчлена.
Рассмотрим квадратный трёхчлен x 2 — x + 3 . Выделяем полный квадрат:

`(x)^2-2*x*1/2+(1/2)^2-(1/2)^2+3=(x-1/2)^2+11/4`. Заметим, что при `x=1/2` значение квадратного трёхчлена равно `11/4`, а при `x!=1/2` к значению `11/4` добавляется положительное число, поэтому получаем число, большее `11/4`. Таким образом, наименьшее значение квадратного трёхчлена равно `11/4` и оно получается при `x=1/2`.

Найдите наибольшее значение квадратного трёхчлена — 16 x 2 + 8 x + 6 .

Выделяем полный квадрат из квадратного трёхчлена: — 16 x 2 + 8 x + 6 = — 4 x 2 — 2 · 4 x · 1 + 1 — 1 + 6 = — 4 x — 1 2 — 1 + 6 = = — 4 x — 1 2 + 7 .

При `x=1/4` значение квадратного трёхчлена равно 7 , а при `x!=1/4` из числа 7 вычитается положительное число, то есть получаем число, меньшее 7 . Таким образом, число 7 является наибольшим значением квадратного трёхчлена, и оно получается при `x=1/4`.

Разложите на множители числитель и знаменатель дроби `/` и сократите эту дробь.

Заметим, что знаменатель дроби x 2 — 6 x + 9 = x — 3 2 . Разложим числитель дроби на множители, применяя метод выделения полного квадрата из квадратного трёхчлена.

x 2 + 2 x — 15 = x 2 + 2 · x · 1 + 1 — 1 — 15 = x + 1 2 — 16 = x + 1 2 — 4 2 = = ( x + 1 + 4 ) ( x + 1 — 4 ) = ( x + 5 ) ( x — 3 ) .

Данную дробь привели к виду `<(x+5)(x-3)>/(x-3)^2` после сокращения на ( x — 3 ) получаем `(x+5)/(x-3)`.

Разложите многочлен x 4 — 13 x 2 + 36 на множители.

Применим к этому многочлену метод выделения полного квадрата.

Разложите на множители многочлен 4 x 2 + 4 x y — 3 y 2 .

Применяем метод выделения полного квадрата. Имеем:

( 2 x ) 2 + 2 · 2 x · y + y 2 — y 2 — 3 y 2 = ( 2 x + y ) 2 — 2 y 2 = = ( 2 x + y + 2 y ) ( 2 x + y — 2 y ) = ( 2 x + 3 y ) ( 2 x — y ) .

Применяя метод выделения полного квадрата, разложите на множители числитель и знаменатель и сократите дробь `<8x^2+10x-3>/<2x^2-x-6>`.

Разложение многочленов на множители. Метод выделения полного квадрата. Комбинация методов

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На данном уроке мы вспомним все ранее изученные методы разложения многочлена на множители и рассмотрим примеры их применения, кроме того, изучим новый метод — метод выделения полного квадрата и научимся применять его при решении различных задач.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Упрощение выражений»


источники:

http://zftsh.online/articles/5741

http://interneturok.ru/lesson/algebra/7-klass/glava-5-razlozhenie-mnogochlenov-na-mnozhiteli/razlozhenie-mnogochlenov-na-mnozhiteli-metod-vydeleniya-polnogo-kvadrata-kombinatsiya-metodov