Реши линейное уравнение с 1 переменной

Решение линейных уравнений с одной переменной

В данной статье рассмотрим принцип решения таких уравнений как линейные уравнения. Запишем определение этих уравнений, зададим общий вид. Разберем все условия нахождения решений линейных уравнений, используя, в том числе, практические примеры.

Обратим внимание, что материал ниже содержит информацию по линейным уравнениям с одной переменной. Линейные уравнения с двумя переменными рассматриваются в отдельной статье.

Что такое линейное уравнение

Линейное уравнение – это уравнение, запись которого такова:
a · x = b , где x – переменная, a и b – некоторые числа.

Такая формулировка использована в учебнике алгебры ( 7 класс) Ю.Н.Макарычева.

Примерами линейных уравнений будут:

3 · x = 11 (уравнение с одной переменной x при а = 5 и b = 10 );

− 3 , 1 · y = 0 (линейное уравнение с переменной y, где а = — 3 , 1 и b = 0 );

x = − 4 и − x = 5 , 37 (линейные уравнения, где число a записано в явном виде и равно 1 и — 1 соответственно. Для первого уравнения b = — 4 ; для второго — b = 5 , 37 ) и т.п.

В различных учебных материалах могут встречаться разные определения. К примеру, Виленкин Н.Я. к линейным относит также те уравнения, которые возможно преобразовать в вид a · x = b при помощи переноса слагаемых из одной части в другую со сменой знака и приведения подобных слагаемых. Если следовать такой трактовке, уравнение 5 · x = 2 · x + 6 – также линейное.

А вот учебник алгебры ( 7 класс) Мордковича А.Г. задает такое описание:

Линейное уравнение с одной переменной x – это уравнение вида a · x + b = 0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

Примером линейных уравнений подобного вида могут быть:

3 · x − 7 = 0 ( a = 3 , b = − 7 ) ;

1 , 8 · y + 7 , 9 = 0 ( a = 1 , 8 , b = 7 , 9 ) .

Но также там приведены примеры линейных уравнений, которые мы уже использовали выше: вида a · x = b , например, 6 · x = 35 .

Мы сразу условимся, что в данной статье под линейным уравнением с одной переменной мы будем понимать уравнение записи a · x + b = 0 , где x – переменная; a , b – коэффициенты. Подобная форма линейного уравнения нам видится наиболее оправданной, поскольку линейные уравнения – это алгебраические уравнения первой степени. А прочие уравнения, указанные выше, и уравнения, приведенные равносильными преобразованиями в вид a · x + b = 0 , определим, как уравнения, сводящиеся к линейным уравнениям.

При таком подходе уравнение 5 · x + 8 = 0 – линейное, а 5 · x = − 8 — уравнение, сводящееся к линейному.

Принцип решения линейных уравнений

Рассмотрим, как определить, будет ли заданное линейное уравнение иметь корни и, если да, то сколько и как их определить.

Факт наличия корней линейного уравнения определятся значениями коэффициентов a и b . Запишем эти условия:

  • при a ≠ 0 линейное уравнение имеет единственный корень x = — b a ;
  • при a = 0 и b ≠ 0 линейное уравнение не имеет корней;
  • при a = 0 и b = 0 линейное уравнение имеет бесконечно много корней. По сути в данном случае любое число может стать корнем линейного уравнения.

Дадим пояснение. Нам известно, что в процессе решения уравнения возможно осуществлять преобразование заданного уравнения в равносильное ему, а значит имеющее те же корни, что исходное уравнение, или также не имеющее корней. Мы можем производить следующие равносильные преобразования:

  • перенести слагаемое из одной части в другую, сменив знак на противоположный;
  • умножить или разделить обе части уравнения на одно и то же число, не равное нулю.

Таким образом, преобразуем линейное уравнение a · x + b = 0 , перенеся слагаемое b из левой части в правую часть со сменой знака. Получим: a · x = − b .

Далее мы разделим обе части равенства на число а , при этом условившись, что это число отлично от нуля, иначе деление станет невозможным. Случай, когда а = 0 , рассмотрим позже.

Итак, производим деление обеих частей уравнения на не равное нулю число а, получив в итоге равенство вида x = — b a . Т.е., когда a ≠ 0 , исходное уравнение a · x + b = 0 равносильно равенству x = — b a , в котором очевиден корень — b a .

Методом от противного возможно продемонстрировать, что найденный корень – единственный. Зададим обозначение найденного корня — b a как x 1 . Выскажем предположение, что имеется еще один корень линейного уравнения с обозначением x 2 . И конечно: x 2 ≠ x 1 , а это, в свою очередь, опираясь на определение равных чисел через разность, равносильно условию x 1 − x 2 ≠ 0 . С учетом вышесказанного мы можем составить следующие равенства, подставив корни:
a · x 1 + b = 0 и a · x 2 + b = 0 .
Свойство числовых равенств дает возможность произвести почленное вычитание частей равенств:

a · x 1 + b − ( a · x 2 + b ) = 0 − 0 , отсюда: a · ( x 1 − x 2 ) + ( b − b ) = 0 и далее a · ( x 1 − x 2 ) = 0 . Равенство a · ( x 1 − x 2 ) = 0 является неверным, поскольку ранее условием было задано, что a ≠ 0 и x 1 − x 2 ≠ 0 . Полученное противоречие и служит доказательством того, что при a ≠ 0 линейное уравнение a · x + b = 0 имеет лишь один корень.

Обоснуем еще два пункта условий, содержащие a = 0 .

Когда a = 0 линейное уравнение a · x + b = 0 запишется как 0 · x + b = 0 . Свойство умножения числа на нуль дает нам право утверждать, что какое бы число не было взято в качестве x, подставив его в равенство 0 · x + b = 0 , получим b = 0 . Равенство справедливо при b = 0 ; в прочих случаях, когда b ≠ 0 , равенство становится неверным.

Таким образом, когда a = 0 и b = 0 , любое число может стать корнем линейного уравнения a · x + b = 0 , поскольку при выполнении этих условий, подставляя вместо x любое число, получаем верное числовое равенство 0 = 0 . Когда же a = 0 и b ≠ 0 линейное уравнение a · x + b = 0 вовсе не будет иметь корней, поскольку при выполнении указанных условий, подставляя вместо x любое число, получаем неверное числовое равенство b = 0 .

Все приведенные рассуждения дают нам возможность записать алгоритм, дающий возможность найти решение любого линейного уравнения:

  • по виду записи определяем значения коэффициентов a и b и анализируем их;
  • при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число станет корнем заданного уравнения;
  • при a = 0 и b ≠ 0 заданное уравнение не будет иметь корней;
  • при a , отличном от нуля, начинаем поиск единственного корня исходного линейного уравнения:
  1. перенесем коэффициент b в правую часть со сменой знака на противоположный, приводя линейное уравнение к виду a · x = − b ;
  2. обе части полученного равенства делим на число a , что даст нам искомый корень заданного уравнения: x = — b a .

Собственно, описанная последовательность действий и есть ответ на вопрос, как находить решение линейного уравнения.

Напоследок уточним, что уравнения вида a · x = b решаются по похожему алгоритму с единственным отличием, что число b в такой записи уже перенесено в нужную часть уравнения, и при a ≠ 0 можно сразу выполнять деление частей уравнения на число a .

Таким образом, чтобы найти решение уравнения a · x = b , используем такой алгоритм:

  • при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число может стать его корнем;
  • при a = 0 и b ≠ 0 заданное уравнение не будет иметь корней;
  • при a , не равном нулю, обе части уравнения делятся на число a , что дает возможность найти единственный корень, который равен b a .

Примеры решения линейных уравнений

Необходимо решить линейное уравнение 0 · x − 0 = 0 .

Решение

По записи заданного уравнения мы видим, что a = 0 и b = − 0 (или b = 0 , что то же самое). Таким образом, заданное уравнение может иметь бесконечно много корней или любое число.

Ответ: x – любое число.

Линейное уравнение с одной переменной

Тема урока: § 5. Линейное уравнение с одной переменной. Навык решения линейных уравнений проверяется на экзаменах ОГЭ и ЕГЭ и необходим для решения текстовых задач.

Существуют ли такие значения переменной $x$, при которых соответственные значения выражений $3x$ и $x+8$ равны? Чтобы ответить на этот вопрос, надо решить уравнение:

При $x$, равном $4$, значения левой и правой частей уравнения равны. Число $4$ называют решением или корнем данного уравнения.

Определение:
Корень уравнения с одной переменной — это число, обращающее данное уравнение в верное равенство.

Решить уравнение — значит найти множество всех его корней.

Линейное уравнение

Определение:
Каждое алгебраическое уравнение с одним неизвестным, степень которого равна единице называется линейным уравнением.

В общем виде линейное уравнение имеет вид:

Где $k$ и $b$ — произвольные числа.

Примеры линейных уравнений

Приведём несколько примеров линейных уравнений:

Уравнение $x+5=8$ имеет корень $3$. Этот корень единственный, так как при $x 3$ больше $8$.

Уравнение $(x+2)(x-1)(x-7)=0$ имеет три корня: $-2$, $1$ и $7$, так как каждое из этих чисел обращает уравнение в верное равенство, а при всех других значениях $x$ ни один из множителей (а значит, и их произведение) не равен нулю.

Уравнение $x+3=x-1$ совсем не имеет корней, так как при любых $x$ значение выражения, стоящего в левой части уравнения, на $4$ больше соответственного значения выражения, стоящего в правой части. Множество корней этого уравнения пустое.

Уравнение $x=|x|$ имеет бесконечное множество корней. Любое положительное число или нуль является его корнем.

Уравнение $5(x+8)=40+5x$ также имеет бесконечное множество корней, причем любое значение $x$ является его корнем, так как выражения $5(x+8)$ и $40+5x$ тождественно равны. О таком уравнении говорят, что оно удовлетворяется тождественно.

Заметим, что каждое из данных равенств имеет общую форму:

$$kx+b=0 \Leftrightarrow kx=-b$$

они внешне похожи друг на друга, где $x$ — переменная (неизвестное), $k$ и $b$ — произвольные числа.

Следующие уравнения не будут являться линейными, так как они не имеют вышеописанный вид.

Свойства линейных уравнений

Линейные уравнения обладают рядом специфических свойств, рассмотрим их:

Любое слагаемое можно переносить в противоположную сторону равенства, но при этом слагаемое меняет знак. Покажем на примере равенства:

$$x+2=0 \Rightarrow x=-2$$

Смена знака связана с тем, что мы вправе прибавлять к обоим частям уравнения одно и то же число (смысл уравнения от этого не меняется).

$$x+0=0-2 \Rightarrow x=-2$$

Каждую часть равенства можно умножать, делить на одно и то же число отличное от нуля (смысл уравнения от этого не меняется). Покажем на примере того же равенства, домножив обе части на число четыре:

$$x+2=0 \Rightarrow (x+2)\cdot 4=0\cdot 4$$

Равносильные уравнения

Рассмотрим три уравнения:

$x(x+2)(x-3)=0$ Уравнение (1) имеет два корня: $-2$ и $3$, а уравнение (2) — три корня: $0$, $-2$ и $3$. Каждый корень уравнения (1) является корнем уравнения (2), но не каждый корень уравнения (2) является корнем уравнения (1).

При $x=0$ второе уравнение обращается в верное равенство , а первое — нет.

Уравнение $x(x+2)=3(x+2)$ имеет два корня: $-2$ и $3$.

Каждое решение уравнения (3) является решением уравнения (1) и каждое решение уравнения (1) является решением уравнения (3). Такие уравнения называются равносильными.

Важно!
У равносильных уравнений множества их решений совпадают.

Понятие равносильности уравнений распространяется и на уравнения с несколькими переменными. Например, два уравнения с переменными $x$ и $y$ считаются равносильными, если каждое решение первого уравнения является решением второго и каждое решение второго уравнения служит решением первого.

Пусть первое уравнение $P(x)=0$, а второе $Q(x)=0$ и если они равносильны, то имеет место знак равносильности:

В дальнейшем мы будем часто использовать такую символику.

Свойства равенств

Можно ли, не решая уравнений $2x-5=9$ и $2x=14$, утверждать, что они равносильны? Ответить на этот вопрос помогут нам хорошо известные свойства равенств. Перечислим их:

Рефлексивность. Любое число равно самому себе: $a=a$.

Симметричность. Если одно число равно другому, то это второе число равно первому: если $a=b$, то $b=a$.

Транзитивность. Если первое число равно второму, а второе равно третьему, то первое число равно третьему: если $a=b$ и $b=c$, то $a=c$. Свойствами, аналогичными указанным свойствам равенств, обладают многие соотношения. Например, параллельность (в множестве прямых плоскости) обладает симметричностью и транзитивностью .

Действительно, если $a||b$, то $b||a$; если $a||b$ и $b||c$, то $a||c$. Равносильность уравнений обладает всеми тремя свойствами. В самом деле, каждое уравнение равносильно самому себе; если одно уравнение равносильно другому, то второе равносильно первому; если одно уравнение равносильно второму, а второе — третьему, то первое уравнение равносильно третьему.

Приведем еще два свойства равенств, которые нам понадобятся дальше:

Если к обеим частям верного равенства прибавить одно и тоже число, то получится верное равенство: если $a=b$, то

Если обе части верного равенства умножить на одно и то же число, то получится верное равенство: если $a=b$, то

Примеры решения уравнений

Свойства равенств используются при решении уравнений. Покажем это на примере.

Задача 1.
Пусть нужно решить уравнение: $6x-42=0$

Прибавим к левой и правой частям уравнения число $42$ (перенесем $-42$ в правую часть уравнения с противоположным знаком).

Получим уравнение: $6x=42$

Если при некотором значении $x$ равенство верно, то верно и равенство которое мы получили, и, наоборот, если при некотором значении $x$ верно равенство которое мы получили, то верно и исходное равенство. Это следует из свойства 4. Значит, уравнения равносильны.

Умножим обе части уравнения на $\frac<1><6>$ (разделим на $6$). Получим уравнение: $x=7$

Из свойства 5. следует, что последние два уравнения равносильны:

$$6x=42 \Leftrightarrow x=7$$

Следовательно равносильны и уравнения (так как равносильность обладает свойством транзитивности): $6x-42=0 \Leftrightarrow x=7$

Значит число $7$ есть корень исходного уравнения.

Рассмотренный пример показывает, что перенос членов уравнения из одной его части в другую с противоположным знаком и умножение (или деление) обеих частей уравнения на неравное нулю число приводят к уравнению, равносильному данному.

Приведем все слагаемые левой части уравнения к общему знаменателю:

Домножим обе части равенства на $\frac<16><7>$ чтобы избавиться от коэффициента при неизвестном, получим:

Сократим числа $7$ и $16$, получим:

Общий вид решений линейного уравнения

Решим уравнение: $kx+b=0$

Очевидно, решение зависит от наших параметров $k$ и $b$, поэтому рассмотрим несколько сюжетов, которые встречаются при решении линейных уравнений.

Шаг 1.

Коэффициент при неизвестной $k$ будет равняться нулю, а свободный член $b$ отличным от нуля.

$$k=0, b\neq 0 \Rightarrow 0\cdot x=-b$$

Заметим, в этом случае не найдется такого числа $x$, что при подстановке его в уравнение — получится верное равенство. Т.к при умножении на 0 мы не получим число отличное от нуля, стало быть — решений нет. Обычно это записывается так: $$x\in \oslash$$ что переводится как: $x$ принадлежит пустому множеству.

Шаг 2.

Коэффициент при неизвестной и свободный член отличны от нуля:

$$k\neq 0, b\neq 0 \Rightarrow kx=-b \Rightarrow x=\frac<-b>$$

Т.е. $x$ принимает действительное и единственное решение в виде отношения двух чисел: $-b$ и $k$

Шаг 3.

Числа $k$ и $b$ принимают значения равное нулю, т.е:

$$k=0, b=0 \Rightarrow kx=-b \Rightarrow 0\cdot x=0$$

Очевидно, что какой бы $x$ мы не взяли — равенство будет верным, т.к, при умножении на 0 получим 0. Тогда говорят, что $x$ — любое число, либо $x$ принадлежит всем действительным числам. Запись имеет такой вид:

В данном случае решение можно записать несколькими способами, например с помощью двойного неравенства:

Задача №1.

Найдите корень уравнения: $0,9x-0,6(x-3)=2(0,2x-1,3)$

Раскроем скобки и приведем подобные.

Перенесем слагаемые содержащие неизвестную в одну часть, а остальные в другую.

Домножим обе части равенства на $10$, тогда получим:

Задача №2.

Решите уравнение: $-36(6x+1)=9(4-2x)$

Раскроем скобки в обеих частях равенства.

Перенесем переменные вправо, а остальные слагаемые влево.

Разделим обе части уравнения на $198$ и получим ответ:

Сократим дробь на $18$.

Задача №3.

Чему равен наибольший корень уравнения: $(1,8-0,3y)(2y+9)=0$?

Для решения уравнения нужно воспользоваться свойством произведения. Произведение равно нулю, тогда и только тогда, когда один из множителей равен нулю, а значит одно из выражений в скобках должно равнятся нулю. Рассмотрим первый случай:

После переноса слагаемых домножим обе части равенства на $10$ и поделим на $3$.

Теперь рассмотрим второй случай:

Разделим обе части равенства на $2$.

Как мы видим у нас получилось два корня, при которых уравнение обращается в $0$. Для ответа выберем наибольший из данных, т.е:

Задача №4.

Найдите корень уравнения:

Вспомним, что все наши действия должны быть направлены на приведение уравнения к виду: $x=…$ Поэтому домножим обе части равенства на общий знаменатель $12$, т.е на $4$ и $3$.

После сокращения слева на $4$, а справа на $3$ получим:

$$(3m+5)\cdot 3=(5m+1)\cdot 4$$

$$3m\cdot 3+5\cdot 3=5m\cdot 4+1\cdot 4$$

В данном случае $9m$ удобно перенести вправо, так как не придется избавляться от минуса. Сделаем перенос слагаемых, приведем подобные и получим ответ.

Задача №5.

При каком значении $a$ уравнение: $3ax=12-x$ имеет корень, равный числу $-9$?

Если подставить вместо переменной $x$ число $-9$, то получим $a$ при котором эта ситуация имеет место.

Обратим внимание на правую часть равенства и воспользуемся свойством:

Если перед скобками стоит знак минус, то при их раскрытии все знаки стоящие в скобках меняются на противоположные.

Разделим обе части уравнения на число $-27$, получим:

Сокращаем правую часть равенства на $3$ и получаем окончательный ответ.

6.5.1. Линейное уравнение с одной переменной

У очень многих школьников возникает вопрос — как решить уравнение с x. Что значит решить уравнение и как найти корень уравнения. Давайте рассмотрим основную схему решения обычного уравнения, называемого линейным, с одной переменной.

Правила и определения

Основные правила и определения для линейного уравнения с одной переменной.

  • Равенство с переменной называют уравнением.
  • Решить уравнение – значит найти множество его корней. Уравнение может иметь один, два, несколько, множество корней или не иметь их вовсе.
  • Каждое значение переменной, при котором данное уравнение превращается в верное равенство, называется корнем уравнения.
  • Уравнения, имеющие одни и те же корни, называются равносильными уравнениями.
  • Любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  • Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Примеры. Решить уравнение.

Уравнение 1

  1. 1,5х-0,3х = -2-4. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  2. 1,2х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
  3. х = -6 : 1,2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.
  4. х = -5. Делили по правилу деления десятичной дроби на десятичную дробь:
  5. чтобы разделить число на десятичную дробь, нужно перенести запятые в делимом и делителе на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число: 6 : 1,2 = 60 : 12 = 5.

Ответ: 5.

Уравнение 2

3(2х-9) = 4(х-4).

  1. 6х-27 = 4х-16. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) c = a c-b c.
  2. 6х-4х = -16+27. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  3. 2х = 11. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
  4. х = 11 : 2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: 5,5.

Уравнение 3

  1. 7х-3-2х = х-9. Раскрыли скобки по правилу раскрытия скобок, перед которыми стоит знак «-»: если перед скобками стоит знак «-», то убираем скобки, знак «-» и записываем слагаемые, стоявшие в скобках, с противоположными знаками.
  2. 7х-2х-х = -9+3. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  3. 4х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
  4. х = -6 : 4. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: -1,5.

Уравнение 4

  1. 3 (х-5) = 7 12 — 4 (2х-11). Умножили обе части равенства на 12 – наименьший общий знаменатель для знаменателей данных дробей.
  2. 3х-15 = 84-8х+44. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) c = a c-b c.
  3. 3х+8х = 84+44+15. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  4. 11х = 143. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).
  5. х = 143 : 11. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: 13.

Уравнения для самостоятельного решения

Решить самостоятельно уравнения:

а) 3-2,6х = 5х+1,48;

б) 1,6 · (х+5) = 4 · (4,5-0,6х);

в) 9х- (6х+2,5) = — (х-5,5);

5а) 0,2; 5б) 2,5; 5в) 2; 5г) -1.

Важные выводы

Итак, для того, чтобы решить уравнение — надо определить его переменную, перенести неизвестную переменную в левую часть уравнения, а известные — в праву. При необходимости упростить левую и правую части и затем найти корень уравнения.


источники:

http://reshu.su/algebra/05/

http://mathematics-repetition.com/reshit-uravnenie-kak-nayti-koren-uravneniya/