Реши уравнение с помощью замены переменной x1

«Решение показательных уравнений с помощью замены переменных». 11-й класс

Разделы: Математика

Класс: 11

Цель урока: изучить способ решения показательных уравнений с помощью замены переменных.

– повторить известные способы решения показательных уравнений;

– показать алгоритм решения с помощью замены переменных;

– создавать условия для формирования навыков организации своей деятельности – самостоятельного поиска решения, самоконтроля;

– приучать к аккуратности выполнения записей в тетради и на доске;

– воспитывать умение работать в парах, взаимопомощь;

– воспитывать умение анализировать результаты своей деятельности;

– формировать умение сравнивать, выявлять закономерности, обобщать;

– формировать грамотную математическую речь;

– формировать умение применять знания в конкретной ситуации.

Преподавание ведется по учебнику А.Н.Колмогорова.

Сегодня мы продолжим знакомство с методами решения показательных уравнений.

Запишите тему урока: “Решение показательных уравнений”, но оставьте строчку, тему мы чуть позже уточним.

2. Актуализация знаний.

Устная работа с классом.

1) =32;5) = – 25;
2) =81;6) ;
3) =;7) =;
4) =27;8) .

3. Постановка проблемы.

Уравнения 1 – 7 решали, приводя их к виду или . Последнее уравнение решить таким способом не удается.

Обратите внимание: . Предложите способ решения. Нужно ввести новую переменную у = и решить полученное квадратное уравнение.

Какова будет наша цель сегодня? Научиться решать показательные уравнения с помощью замены переменных.

Уточним тему урока: “Решение показательных уравнений с помощью замены переменных”.

4. Изучение нового материала.

Пусть у = , причем у > 0.

Уравнение примет вид .

Решим это уравнение: = –1; = 5.

не удовлетворяет условию у > 0.

= 5; х = 1.

Решим уравнение .

Перепишем его в виде .

Далее решает ученик у доски с комментированием.

Пусть , причем у > 0.

3у – 8 = ; 3– 8у = 3; 3– 8у – 3 = 0;

Решим это уравнение: = –; = 3.

не удовлетворяет условию у > 0.

= 3; х = 1.

Решим уравнение .

Почему не удается решить? Нельзя привести степени к одному основанию.

Перепишем уравнение в виде

Разделим обе части уравнения на : .

Далее решает у доски ученик с комментированием.

Пусть у =, причем у > 0.

Уравнение примет вид .

.

Решим это уравнение: = 1; =.

= 1; х = 0. = ; х = 1.

Можно было делить на ? Что изменилось бы в решении? Ввели бы обозначение у =.

5. Первичное закрепление изученного материала.

Ученики работают в парах, более сильные ребята помогают соседям.

Два ученика работают за крыльями доски.

.

Перепишем в виде .

Пусть , причем у > 0.

у += 12;

+ 27 = 12у;

– 12у +27 = 0.

Решим это уравнение: = 3; = 9.

= 3; х = 1. = 9; х = 2.

Ответ: 1; 2.

Разделим обе части уравнения на : .

Пусть у =, причем у > 0.

Уравнение примет вид .

Решим это уравнение: = – 1; =.

не удовлетворяет условию у > 0.

= ; = ; = 2; х = .

Ответ: .

6. Самостоятельная работа.

Чтобы проверить, как усвоен новый материал, выполните самостоятельную работу.

1) ;

2) ;

3) .

По окончании работы ученики самостоятельно проверяют решение по образцу (раздаточный материал), фиксируя места, где допущены ошибки.

7. Итог урока.

  • Обсуждение результатов самостоятельной работы.
  • Кто выполнил правильно все задания?
  • Кто допустил ошибки в первом (втором, третьем) задании? Какие?
  • Повторим, какие приемы использовали при решении показательных уравнений.
  • Оцените свою работу на уроке.
  • Вам предстоит еще раз применить полученные знания при выполнении домашнего задания: № 464(в,г), 470(в,г), 166(г) (стр. 299).

Метод замены переменной

Метод замены переменной – это такой способ решения, при котором в уравнение (или неравенство) вводится новая переменная, в результате чего оно становится более простым.

Этот метод один из самых популярных при решении сложных заданий, в частности, в ЕГЭ и ОГЭ.

У нас довольно сложное уравнение. А если раскрыть скобки, оно станет еще сложнее. Что делать? Давайте попробуем заменить переменную.

Заменим выражение \(x+\frac<1>\) буквой \(t\).

Получилось обычное квадратное уравнение! Решив его, найдем чему равно \(t\), после чего, сделав обратную замену, вычислим \(x\).

Когда не стоит вводить новую переменную? Когда это не сделает уравнение проще. Например, если старая переменная остается, несмотря на замену:

Попробуем сделать замену здесь.

Заменим выражение \(\sin x\) буквой \(t\).

Видим, что в этой замене нет никакого смысла – она не упростила уравнение, даже наоборот, усложнила его, потому что теперь у нас в уравнении две переменные.

Примеры использования метода замены переменной

Заметим, что \(x^4=(x^2 )^2\) (см. свойства степеней ). Тогда наше уравнение приобретает следующий вид.

Теперь используем метод замены.

Вводим новую переменную, заменяя \(x^2\) на \(t\).

Мы нашли чему равно \(t\), но найти-то надо иксы! Поэтому делаем обратную замену.

Ответ: \(±1\); \(±\) \(\frac<1><2>\) .

Весьма частая ошибка при использовании этого метода: забыть «вернуться к иксам», то есть не сделать обратную замену. Помните – нам нужно найти \(x\), а не \(t\)! Поэтому возврат к \(x\) — строго обязателен!

Пример. Решить неравенство: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Приступим к решению.

Раскладываем левую часть неравенства на множители .

Теперь нужно вернуться к исходной переменной – иксу. Для этого перейдем к совокупности , имеющей такое же решение, и сделаем обратную замену.

Методы решения систем уравнений с двумя переменными

п.1. Метод подстановки

Вариант 1
Шаг 1. Из одного уравнения выразить y через x: y(x).
Шаг 2. Подставить полученное выражение во второе уравнение и найти x.
Шаг 3. Подставить найденный x в y(x) и найти y.
Шаг 4. Записать полученные пары решений. Работа завершена.

Вариант 2
Шаг 1. Из одного уравнения выразить x через y: x(y).
Шаг 2. Подставить полученное выражение во второе уравнение и найти y.
Шаг 3. Подставить найденный y в x(y) и найти x.
Шаг 4. Записать полученные пары решений. Работа завершена.

п.2. Метод сложения

п.3. Метод замены переменных

Иногда удобно ввести новые переменные и решить систему для них.
А затем, вернуться к исходным переменным и найти их значения.

п.4. Графический метод

Графический метод подробно рассмотрен в §15 данного справочника.

п.5. Примеры

Пример 1. Решите систему уравнений:
а) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Решаем методом подстановки: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Для нижнего уравнения: \( \mathrm \)
Подставляем в верхнее уравнение: \( \mathrm \)

б) \( \left\< \begin < l >\mathrm & \\ \mathrm <(x^2+y^2)xy=10>& \end\right. \)
Замена переменных: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Выразим (x 2 + y 2 ) через a и b:
x 2 + y 2 = (x 2 + y 2 + 2xy) – 2xy = (x + y) 2 – 2xy = a 2 – 2b
Подставляем: \( \left\< \begin < l >\mathrm & \\ \mathrm <(a^2-2b)b=10>& \end\right.\Rightarrow \left\< \begin < l >\mathrm & \\ \mathrm <9b-2b^2=10>& \end\right. \)
Решаем нижнее уравнение: 2b 2 – 9b + 10 = 0 $$ \mathrm< D=9^2-4\cdot 2\cdot 10=1,\ \ b=\frac<9\pm 1><4>> = \left[\begin < l >\mathrm & \\ \mathrm & \end\right. $$ Возвращаемся к исходным переменным: \( \left[\begin < l >\left\<\begin < l >\mathrm & \\ \mathrm & \end\right.& \\ \left\<\begin < l >\mathrm & \\ \mathrm & \end\right. \end\right. \)


источники:

http://cos-cos.ru/math/78/

http://reshator.com/sprav/algebra/9-klass/metody-resheniya-sistem-uravnenij-s-dvumya-peremennymi/