Решить графически квадратное уравнение с модулем

«Графическое решение квадратных уравнений, содержащих модуль». Урок алгебры в 9-м классе

Разделы: Математика

Тема: Графическое решение квадратных уравнений, содержащих модуль.

Цель:

  1. закрепить навыки построения графика квадратичной функции;
  2. научить выполнять преобразования графиков функций;
  3. используя графики функций, решать уравнения.

Ход урока

1. Построим график квадратичной функции y = x² – 8x + 12
Преобразуем функцию, выделив полный квадрат, получим y = (x — 4)² — 4
График этой функции получается из графика функции y = x² путем параллельного переноса на вектор

2. Выполним преобразования и построим график функции y = x² – 8|x| +12

Так как противоположным значениям аргумента соответствуют одинаковые значения функции ,то график данной функции будет симметричным относительно оси ординат, поэтому построим график функции y = x² – 8|x| = 12 для x ≥ 0 (т.е. y = x² — 8х + 12) и
отобразим его симметрично относительно оси ординат.

Таким образом, получим:

3. Построим график функции y = | x² – 8|x| + 12 |

График данной функции получим из графика функции y = x² – 8|x| + 12 путем
симметрии относительно оси абсцисс того участка, где у 12;
б) при k = 12;
в) при k = 0;
г) при k = 4;
д) при k (0; 4);
е) при k 15.06.2010

Алгебраическое и графическое решение уравнений, содержащих модули

Алгебраическое и графическое решение уравнений, содержащих модули.

2.Понятия и определения………………………………………….4

4.Способы решение уравнений, содержащих модуль…………. 6

4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами…………………………………………………………12

4.2.Использование геометрической интерпретации модуля для решения уравнений…………………………………………………………..14

4.3.Графики простейших функций, содержащих знак абсолютной величины…………………………………………………………..15

4.4.Решение нестандартных уравнений, ………….16

Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это многозначное слово(омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, программировании и других точных науках.

В архитектуре — это исходная единица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике — это термин, применяемый в различных областях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и. т.п.

Модуль объемного сжатия( в физике)-отношение нормального напряжения в материале к относительному удлинению.

2. Понятия и определения

Чтобы глубоко изучать данную тему, необходимо познакомиться с простейшими определениями, которые мне будут необходимы:

Уравнение-это равенство, содержащее переменные.

Уравнение с модулем — это уравнение, содержащие переменную под знаком абсолютной величины(под знаком модуля).Например: |x|=1

Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

В математике модуль имеет несколько значений, но в моей исследовательской работе я возьму лишь одно:

Модуль — абсолютная величина числа, равная расстоянию от начала отсчета до точки на числовой прямой.

3. Доказательство теорем

Определение. Модуль числа a или абсолютная величина числа a равна a, если a больше или равно нулю и равна — a, если a меньше нуля:

Из определения следует, что для любого действительного числа a,

Теорема 1. Абсолютная величина действительного числа равна большему из двух чисел a или –a

1. Если число a положительно, то — a отрицательно, т. е. — a 0 уравнение имеет 2 различных корня.

Как показывает решение, корнями данного уравнения также являются числа 11/3 и 6

Ответ: x1=6, x2=11/3

Пример 5. Решим уравнение (2x + 3)2= ( x – 1)2.

Учитывая соотношение (2), получим, что |2x + 3|=|x – 1|, откуда по образцу предыдущего примера (и по соотношению (1)):

2х + 3=х – 1 или 2х + 3=-х + 1

2х – х=-1 – 3 2х+ х=1 – 3

Таким образом корнями уравнения являются х1=-4, и х2=-0,(6)

Пример 6. Решим уравнение |x – 6|=|x2 – 5x + 9|

Пользуясь соотношением (1), получим:

х – 6=х2 – 5х + 9 или х – 6 = -(х2 – 5х + 9)

-х2 + 5х + х – 6 – 9=0 |(-1) x – 6=-x2 + 5x — 9

x2 — 6x + 15=0 x2 – 4x + 3=0

D=36 – 4 * 15=36 – 60= -24 0

Проверка: |1 – 6|=|12 – 5 * 1 + 9| |3 – 6|=|32 – 5 * 3 + 9|

5 = 5(И) 3 = |9 – 15 + 9|

4.2.Использование геометрической интерпретации модуля для решения уравнений.

Геометрический смысл модуля разности величин — это расстояние между ними. Например, геометрический смысл выражения |x – a | — длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример 7. Решим уравнение |x – 1| + |x – 2|=1 с использованием геометрической интерпретации модуля.

Будем рассуждать следующим образом: исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки абсцисс х до двух фиксированных точек с абсциссами 1 и 2. Тогда очевидно, что все точки с абсциссами из отрезка [1; 2] обладают требуемым свойством, а точки, расположенные вне этого отрезка — нет. Отсюда ответ: множеством решений уравнения является отрезок [1; 2].

Пример8. Решим уравнение |x – 1| — |x – 2|=1 1 с использованием геометрической интерпретации модуля.

Будем рассуждать аналогично предыдущему примеру, при этом получим, что разность расстояний до точек с абсциссами 1 и 2 равна единице только для точек, расположенных на координатной оси правее числа 2. Следовательно, решением данного уравнения будет являться не отрезок, заключенный между точками 1 и 2, а луч, выходящий из точки 2, и направленный в положительном направлении оси ОХ.

Обобщением вышеприведенных уравнений являются следующие равносильные переходы:

|x – a| + |x – b|=b – a, где b >a Û a a Û x

График квадратичной функции с модулем

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

График квадратичной функции, содержащей переменную под знаком абсолютной величины. Знание только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью. Л. Н. Толстой. Выполнила: Асламурзаева Белла, ученица 9 «А» класса, СОШ №46 им. И .Дзусова Руководитель: Дряева М.Г. Преподаватель математики СОШ №46 им. И .Дзусова

Содержание: 1.Введение 2.Основные определения и свойства. 3.Построение графика квадратичной функции, содержащей переменную под знаком модуля. 4.Выводы. 5. Используемая литература.

Цель работы – рассмотреть построение графика квадратичной функции, содержащей переменную под знаком модуля. Объект исследования: график квадратичной функции. Предмет исследования: изменения графика квадратичной функции в зависимости от расположения знака абсолютной величины. Задачи: 1) Изучить литературу о свойствах абсолютной величины и квадратичной функции. 2) Исследовать изменения графика квадратичной функции в зависимости от расположения знака абсолютной величины. Практическая значимость моей работы заключается: 1) в использовании приобретенных знаний по данной теме, а также углубление их и применение к другим функциям и уравнениям; 2) в использовании навыков исследовательской работы в дальнейшей учебной деятельности.

Основные определения и свойства Функция, определяемая формулой у=ах²+вх+с, где х и у переменные, а параметры а, в и с – любые действительные числа, причём а≠0, называется квадратичной. Абсолютной величиной неотрицательного числа называется само это число, абсолютной величиной отрицательного числа называется противоположное ему положительное число. Свойства: 1.|a| ≥0, 2. |a|²= a², 3.|a∙b|=|a|∙|b|, 4. |a/b|=|a|/|b|, b≠0

Построение графика линейной функции, содержащей переменную под знаком модуля. 1)f(x)= |x-1|. x = 1- корень подмодульного выражения. Возьмем x=0, (0 1). Вычисляя функции в точках 1,0 и 2,получаем график, состоящий из двух отрезков.

2) f(x)= |x-1|+|x-2|. Вычисляя значение функции в точках 1, 2, 0 и 3, получаем график, состоящий из трех отрезков прямых.

Построение графика квадратичной функции, содержащей переменную под знаком модуля На примере функции у = x ²-6х +5 рассмотрим всевозможные случаи расположения модуля. у = |x 2 – 6х +5| у = | х | 2 – 6х +5 у = х² – 6|х| +5 у = |х|² — 6|х|+5 у = |х² – 6х| +5 у = |х² – 6|х| +5| у = x 2 -|6х + 5| |y|= x 2 – 6х +5

Построим график функции у = |x 2 – 6х +5| Пользуясь определением модуля, рассмотрим два случая: Пользуясь определением модуля, рассмотрим два случая: Пользуясь определением модуля, рассмотрим два случая: Пользуясь определением модуля, рассмотрим два случая: . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. . Выделим все точки параболы с неотрицательной ординатой. Выделим все точки параболы с неотрицательной ординатой. x ²– 6х +5≥ 0, тогда у= x² – 6х +5.Выделим все точки параболы с неотрицательной ординатой. 2) x² – 6х +5 0, y= -x² + 6х -5.

Рассмотрим график функции у = |х|²– 6х +5 Т.к. |x|²= x² , то функция у = |х|² – 6х +5 совпадает с функцией у = x ²-6х +5 ,а , значит, имеют один и тот же график.

Рассмотрим график функции у = х² – 6|х| +5 Пользуясь определением модуля, рассмотрим два случая: 1)Пусть x≥0, тогда y= х² — 6х +5. Построим параболу у = х² — 6х +5 и обведём ту её часть, которая соответствует неотрицательным значениям х, т.е. часть, расположенную правее оси Оу. 2)Пусть x 0 имеем 2. » onclick=»aa_changeSlideByIndex(14, 0, true)» >

Равенство |y|= x 2 – 6х +5 не задает функции т. к. при x 2 – 6х +5 >0 имеем 2 значения y, соответствующих данному значению x, а при x 2 – 6х +5 0, y= x² – 6х +5 2)при x² – 6х +5

Краткое описание документа:

1)Для построения графика функции y = | f ( x )| , надо сохранить ту часть графика функции y = f ( x ), точки которой находятся на оси Ох или выше оси Ох, и симметрично отразить относительно оси Ох ту часть графика функции y = f ( x ), которая расположена ниже оси Ох.

2) Для построения графика y = f (| x |) надо сохранить ту часть графика функции y = f (| x |), точки которой на оси Оу или справа от неё и симметрично отразить эту часть графика относительно оси Оу .

3) Чтобы построить график уравнения | y |= f(x) нужно:

Отбросить ту часть графика , которая лежит ниже оси

Ох, а оставшуюся часть симметрично отобразить


источники:

http://pandia.ru/text/78/290/1270.php

http://infourok.ru/grafik_kvadratichnoy_funkcii_s_modulem-305665.htm