Решить нелинейное уравнение с точностью

Численные методы решения нелинейных уравнений

В этом разделе приведены примеры решенных задач по теме нахождения корней нелинейных уравнений численными методами. На первом этапе обычно происходит локализация (отделение) корней (графически или аналитически), на втором — уточнение (поиск) корней разными методами: Ньютона, Стеффенсена, секущих, хорд, касательных, простой итерации.

Примеры приближенных решений нелинейных уравнений онлайн

Задача 1. Методом бисекции найти решение нелинейного уравнения на отрезке $[a;b]$ с точностью $\varepsilon = 10^<-2>$. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом простой итерации с точностью $\varepsilon=10^<-4>$. Для метода простой итерации обосновать сходимость и оценить достаточное для достижения заданной точности число итераций.

Задача 2. Отделить корни нелинейного уравнения аналитически $2 arcctg x -x+3=0$.

Задача 3. Отделить корни нелинейного уравнения аналитически и уточнить один из них методом проб с точностью до 0,01. $$3x^4-8x^3-18x^2+2=0.$$

Задача 4. Отделить корни нелинейного уравнения графически (например, в среде EXCEL) уточнить один из них методом проб с точностью до 0,01. $$x^2-20 \sin x =0.$$

Задача 5. Отделите корни уравнения графически и уточните один из них методом хорд с точностью до 0,001. Уточните один из корней этого уравнения методом касательных с точностью до 0,001. $$ \sqrt — \cos 0.387 x =0.$$

Задача 6.Отделить корни уравнения графически и уточнить один из них методом итераций с точностью до 0,001. $$\sqrt=\frac<1>.$$

Задача 7. На отрезке $[0;2]$ методом Ньютона найти корень уравнения $-x^3-2x^2-4x+10=0$ с точностью 0,01.

Задача 8. Методом хорд найти отрицательный корень уравнения $x^3-2x^2-4x+7=0$ с точностью 0,0001. Требуется предварительное построение графика функции и отделение корней.

Задача 9. Решить нелинейные уравнения с точностью до 0.001. $$1)\, x^3-12x-5=0\, (x \gt 0), \, 2)\, \tan x -1/x=0. $$

Решение нелинейных уравнений

Уравнения, в которых содержатся неизвестные функции, произведенные в степень больше единицы, называются нелинейными.
Например, y=ax+b – линейное уравнение, х^3 – 0,2x^2 + 0,5x + 1,5 = 0 – нелинейное (в общем виде записывается как F(x)=0).

Системой нелинейных уравнений считается одновременное решение нескольких нелинейных уравнений с одной или несколькими переменными.

Существует множество методов решения нелинейных уравнений и систем нелинейных уравнений, которые принято относить в 3 группы: численные, графические и аналитические. Аналитические методы позволяют определить точные значения решения уравнений. Графические методы наименее точны, но позволяют в сложных уравнениях определить наиболее приближенные значения, с которых в дальнейшем можно начинать находить более точные решения уравнений. Численное решение нелинейных уравнений предполагает прохождения двух этапов: отделение корня и его уточнение до определенно заданной точности.
Отделение корней осуществляется различными способами: графически, при помощи различных специализированных компьютерных программ и др.

Рассмотрим несколько методов уточнения корней с определенно заданной точностью.

Методы численного решения нелинейных уравнений

Метод половинного деления.

Суть метода половинного деления заключается в делении интервала [a,b] пополам (с=(a+b)/2) и отбрасывании той части интервала, в которой отсутствует корень, т.е. условие F(a)xF(b)

Рис.1. Использование метода половинного деления при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0, то начала отрезка a переносится в x (a=x), иначе, конец отрезка b переносится в точку x (b=x). Полученный отрезок делим опять пополам и т.д. Весь произведенный расчет отражен ниже в таблице.

Рис.2. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

При использовании метода хорд, задается отрезок [a,b], в котором есть только один корень с установленной точностью e. Через точки в отрезке a и b, которые имеют координаты (x(F(a);y(F(b)), проводится линия (хорда). Далее определяются точки пересечения этой линии с осью абсцисс (точка z).
Если F(a)xF(z)

Рис.3. Использование метода хорд при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0;

Определим вторую производную F’’(x) = 6x-0,4.

F’’(-1)=-6,4 0 соблюдается, поэтому для определения корня уравнения воспользуемся формулой:


, где x0=b, F(a)=F(-1)=-0,2

Весь произведенный расчет отражен ниже в таблице.

Рис.4. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

Метод касательных (Ньютона)

Данный метод основывается на построении касательных к графику, которые проводятся на одном из концов интервала [a,b]. В точке пересечения с осью X (z1) строится новая касательная. Данная процедура продолжается до тех пор, пока полученное значение не будет сравним с нужным параметром точности e (F(zi)

Рис.5. Использование метода касательных (Ньютона) при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0 выполняется, поэтому расчеты производим по формуле:

Весь произведенный расчет отражен ниже в таблице.

Рис.6. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Последовательность действий

Лабораторная работа №4

Тема. Приближенные методы решения нелинейных уравнений

Задание.

Решить нелинейное уравнение с заданной точностью e ,

двумя приближёнными (итерационными) методами:

1. методом половинного деления (все студенты)

2. методом, выбранным в соответствии с вариантом.

Вид уравнения и метод выбрать в соответствии с вариантом (приложение 1).

Порядок выполнения

1. Первый этап – этап локализация корней

· Определите область допустимых значений (ОДЗ) функции y=f(x).

· Определите количество действительных корней уравнения (1.1) и их расположение. Для этого протабулируйте функцию y=f(x) на достаточно большом отрезке [а, b] из ОДЗ с шагом h=(b-a)/10 и постройте её график (рис.1.1).

· Выделите отрезки, на которых существует единственный корень, используя теорему из математического анализа.

Теорема 1. Уравнения (1.1) имеет единственный корень в интервале x * Î (а, b), если функция у=f(x) удовлетворяет на отрезке xÎ [a, b] следующим условиям:

1. функция непрерывна,

2. f(a) f(b) ’ (x) сохраняет знак на этом отрезке.

· Определите нулевое приближение (нулевую итерацию) х0 для метода хорд и метода касательных.

· Протабулируйте функцию на отрезке, на котором существует единственный корень, и постройте ее график.

2. Второй этап – этап уточнения корня (этап построения итерационного процесса) до заданной точности

Для построения итерационного процесса используйте одну из приведенных ниже расчетных схем в зависимости от метода решения нелинейного уравнения (рис. 1.2, 1.3 и 1.4).

Рис.1.2 Расчетная схема метода половинного деления

Для формирования концов сужающегося отрезка [a, b] в методе половинного деления рекомендуется использовать логическую функцию Excel ЕСЛИ.

Рис.1.3. Расчетная схема метода хорд

Рис.1.4. Расчетная схема метода касательных

3. Условное форматирование

Условное форматированиеэто форматирование выделенных ячеек на основе некоторого критерия, в результате чего произойдет цветовое оформление ячеек, содержимое которых удовлетворяет заданному условию.

Чтобы сделать наглядным окончание итерационного процесса, воспользуйтесь Условным форматированием. Для этого выполните следующие действия:

· выделите ячейки последнего столбца расчетной схемы, где будет задаваться критерий окончания итерационного процесса (рис. 1.2, или 1.3, или 1.4);

· на вкладке Главная выберите панель Стили и нажмите кнопку Условное форматирование;

· в появившемся меню (рис.1.5) выберите пункт Правила выделения ячеек, а в подменю – пункт Меньше;

Рис.1.5. Установка параметров условного форматирования

· в левой части открывшегося диалогового окна Меньше (рис.1.6) задайте значение, которое будет использовано в качестве критерия (в нашем примере это адрес ячейки Е4 для всех трех расчетных схем, где находится значение точности ε).

· в выпадающем списке правой части окна выберите цвет, которым будут окрашены ячейки, отвечающие заданному условию; и нажмите кнопку ОК.

Рис.1.6. Диалоговое окно условного форматирования

В результате условного форматирования наглядно видно (рис.1.2, 1.3 и 1.4)., что решением нелинейного уравнения (1.1) с точностью e=0,01 является:

Приближенное значение корняНомер итерацииМетод
Х * ≈1,763n=3касательных
Х * ≈1,759n=3хорд
Х * ≈1,758n=8половин.деления

4. Исследовательская часть (численный эксперимент)

· Постройте таблицу и диаграмму зависимости количества итераций от заданной точности n=n(e) для e=0.1; 0.01; 0.001; 0.0001.

· Проанализируйте полученные результаты, сделайте соответствующие выводы.

5. Контрольный пример

Решите ваше нелинейное уравнение, используя надстройку Подбор параметра.

Последовательность действий

1. Подготовьте таблицу, как показано на рис.1.7. В ячейку А3 введите некоторое значение х0 из ОДЗ функции y=f(x). Это будет начальным приближением для итерационного метода, реализуемого приложением Подбор параметра. Ячейка В3 является изменяемой ячейкой в процессе работы надстройки. Введите в нее это же значение х0, а в ячейке С3 вычислите значение f(xn) для этого приближения.

2. Выберите вкладку Данные, на панели Работа с данными нажмите кнопку Анализ «что-если» и в открывшемся подменю выберите пункт Подбор параметра.

Рис.1.8. Окно «Подбор параметра»

3. В появившемся окне «Подбор параметра»сделайте установки, как показано на рис.1.8 и нажмите кнопку ОК.

Если все было проделано правильно, то в ячейке В3 (рис.1.7) будет получено приближенное значение корня нашего уравнения.

Проделайте все эти операции ещё раз с другим значением начального приближения х0., для определения других корней уравнения (если они имеются).

1. Какое уравнение называется нелинейным. Пример нелинейного уравнения.

2. Что является решением нелинейного уравнения.

3. Геометрическая интерпретация решения нелинейного уравнения.

4. Методы решения нелинейного уравнения (прямые и итерационные), в чем разница.

5. Два этапа решения нелинейного уравнения. Какие задачи ставятся на первом и втором этапах.

6. Табулирование функции, сеточная функция, шаг табулирования.

7. Построение итерационной последовательности. Понятие сходимости итерационной последовательности. Нахождение приближенного значения корня нелинейного уравнения с заданной точностью ε.

8. Критерии окончания итерационного процесса. Геометрический смысл критериев.

9. Метод половинного деления. Суть метода (см. вопросы 6,7).

10. Метод Ньютона (касательных). Как выбирается нулевое приближение (нулевая итерация). Суть метода (см. вопросы 6, 7).

11. Метод хорд. Как выбирается нулевое приближение (нулевая итерация). Суть метода (см. вопросы 6, 7).


источники:

http://reshit.ru/Reshenie-nelineynyh-uravneniy

http://poisk-ru.ru/s57056t18.html