Решить однородное дифференциальное уравнение 1 го порядка

Как решить однородное дифференциальное уравнение

Чтобы решить однородное дифференциальное уравнение 1-го порядка, используют подстановку u=y/x, то есть u — новая неизвестная функция, зависящая от икса. Отсюда y=ux. Производную y’ находим с помощью правила дифференцирования произведения: y’=(ux)’=u’x+x’u=u’x+u (так как x’=1). Для другой формы записи: dy=udx+xdu.После подстановки уравнение упрощаем и приходим к уравнению с разделяющимися переменными.

Примеры решения однородных дифференциальных уравнений 1-го порядка.

1) Решить уравнение

Проверяем, что это уравнение является однородным (см. Как определить однородное уравнение). Убедившись, делаем замену u=y/x, откуда y=ux, y’=(ux)’=u’x+x’u=u’x+u. Подставляем: u’x+u=u(1+ln(ux)-lnx). Так как логарифм произведения равен сумме логарифмов, ln(ux)=lnu+lnx. Отсюда

u’x+u=u(1+lnu+lnx-lnx). После приведения подобных слагаемых: u’x+u=u(1+lnu). Теперь раскрываем скобки

u’x+u=u+u·lnu. В обеих частях стоит u, отсюда u’x=u·lnu. Поскольку u — функция от икса, u’=du/dx. Подставляем,

Получили уравнение с разделяющимися переменными. Разделяем переменные, для чего обе части умножаем на dx и делим на x·u·lnu, при условии, что произведение x·u·lnu≠0

В левой части — табличный интеграл. В правой — делаем замену t=lnu, откуда dt=(lnu)’du=du/u

ln│t│=ln│x│+C. Но мы уже обсуждали, что в таких уравнениях вместо С удобнее взять ln│C│. Тогда

ln│t│=ln│x│+ln│C│. По свойству логарифмов: ln│t│=ln│Сx│. Отсюда t=Cx. ( по условию, x>0). Пора делать обратную замену: lnu=Cx. И еще одна обратная замена:

По свойству логарифмов:

Это — общий интеграл уравнения.

Вспоминаем условие произведение x·u·lnu≠0 (а значит, x≠0,u≠0, lnu≠0, откуда u≠1). Но x≠0 из условия, остается u≠1, откуда x≠y. Очевидно, что y=x ( x>0) входят в общее решение.

2) Найти частный интеграл уравнения y’=x/y+y/x, удовлетворяющий начальным условиям y(1)=2.

Сначала проверяем, что это уравнение является однородным (хотя наличие слагаемых y/x и x/y уже косвенно указывает на это). Затем делаем замену u=y/x, откуда y=ux, y’=(ux)’=u’x+x’u=u’x+u. Подставляем полученные выражения в уравнение:

u’x=1/u. Так как u — функция от икса, u’=du/dx:

Получили уравнение с разделяющимися переменными. Чтобы разделить переменные, умножаем обе части на dx и u и делим на x (x≠0 по условию, отсюда u≠0 тоже, значит, потери решений при этом не происходит).

и поскольку в обеих частях стоят табличные интегралы, сразу же получаем

Выполняем обратную замену:

Это — общий интеграл уравнения. Используем начальное условие y(1)=2, то есть подставляем в полученное решение y=2, x=1:

3) Найти общий интеграл однородного уравнения:

(x²-y²)dy-2xydx=0.

Замена u=y/x, откуда y=ux, dy=xdu+udx. Подставляем:

(x²-(ux)²)(xdu+udx)-2ux²dx=0. Выносим x² за скобки и делим на него обе части (при условии x≠0):

(1-u²)(xdu+udx)-2udx=0. Раскрываем скобки и упрощаем:

xdu-u²xdu-u³dx-udx=0. Группируем слагаемые с du и dx:

(x-u²x)du-(u³+u)dx=0. Выносим общие множители за скобки:

x(1-u²)du-u(u²+1)dx=0. Разделяем переменные:

x(1-u²)du=u(u²+1)dx. Для этого обе части уравнения делим на xu(u²+1)≠0 (соответственно, добавляем требования x≠0 (уже отметили), u≠0):

В правой части уравнения — табличный интеграл, рациональную дробь в левой части раскладываем на простые множители:

(или во втором интеграле можно было вместо подведения под знак дифференциала сделать замену t=1+u², dt=2udu — кому какой способ больше нравится). Получаем:

По свойствам логарифмов:

Вспоминаем условие u≠0. Отсюда y≠0. При С=0 y=0, значит, потери решений не происходит, и y=0 входит в общий интеграл.

Можно получить запись решения в другом виде, если слева оставить слагаемое с x:

Геометрический смысл интегральной кривой в этом случае — семейство окружностей с центрами на оси Oy и проходящих через начало координат.

Задания для самопроверки:

Так как u=y/x, u²=y²/x², то есть y²=u²x²,

2) Проверив, что данное уравнение является однородным, делаем замену y=ux, отсюда y’=u’x+u. Подставляем в условие:

Делим обе части уравнения на x:

Интегрируем обе части:

и, умножив на x обе части уравнения, получаем:\

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Однородные уравнения первого порядка

Вы будете перенаправлены на Автор24

Понятие однородного уравнения

Дифференциальное уравнение первого порядка, представленное в стандартном виде $y’=f\left(x,y\right)$, является однородным, если его правая часть зависит не просто от переменных $x$ и $y$, а от отношения функции $y$ к независимой переменной $x$, то есть $ f (x,y) = f (x/y)$.

Зависимость функции от отношения $\frac $ следует понимать так, что функция не изменяется при замене в ней данного отношення на любое другое, имеющее вид $\frac$. Например, именно такое свойство имеет функция $f\left(x,y\right)=\frac \cdot \cos \frac $. Действительно, $f\left(x,y\right)=\frac \cdot \cos \frac =\frac\cdot \cos \frac$. После замены переменных $x$ и $y$ на $t\cdot x$ и $t\cdot y$ соответственно и последующего сокращения на $t$ данная функция приобретает свой исходный вид. В этом и состоит основное свойство однородного дифференциального уравнения.

Общий метод решения

Однородное дифференциальное уравнение $y’=f (x/y)$ решают посредством применения замены $\frac =u$, где $u=u\left(x\right)$ — новая неизвестная функция. Идея состоит в том, что найдя функцию $u$ и умножив её на $x$, можно будет найти и нужную функцию $y$.

Представим замену в виде $y=u\cdot x$ и продифференцируем её: $\frac =\frac \cdot x+u\cdot \frac =\frac \cdot x+u$. Подставим $y$ и $\frac $ в данное дифференциальное уравнение: $\frac \cdot x+u=f\left(u\right)$.

Полученное дифференциальное уравнение представляет собой уравнение с разделяющимися переменными. Действительно, после элементарных преобразований его можно представить в виде $\frac =\frac $, где $f_ <1>\left(x\right)=\frac<1> $ — функция, зависящая только от $x$, и $f_ <2>\left(u\right)=f\left(u\right)-u$ — функция, зависящая только от $u$. Применим к этому дифференциальному уравнению метод решения дифференциальных уравнений с разделяющимися переменными.

Готовые работы на аналогичную тему

Сначала вычисляем интеграл $I_ <1>=\int f_ <1>\left(x\right)\cdot dx $. Получаем: $I_ <1>=\int \frac<1> \cdot dx=\ln \left|x\right| $. Теперь записываем интеграл $I_ <2>=\int \frac \left(u\right)> $. Получаем: $I_ <2>=\int \frac $. Общее решение записываем в форме $I_ <2>=I_ <1>+C$, то есть $\int \frac =\ln \left|x\right|+C$. Правую часть полученного решения можно упростить, если представить произвольную постоянну в более удобной форме $\ln \left|C\right|$. При этом получим: $\ln \left|x\right|+\ln \left|C\right|=\ln \left|x\cdot C\right|$.

Окончательно получаем: $\int \frac =\ln \left|x\cdot C\right|$. После вычисления интеграла $\int \frac $ и замены $u$ на $\frac $ общее решение данного однородного дифференциального уравнения будет найдено.

Общий метод решения можно представить в виде следующего алгоритма:

  1. В первую очередь убеждаемся, что решаемое дифференциальное уравнение является однородным. Для этого нужно представить его в стандартном виде $y’=f\left(x,y\right)$, после чего в функции $f\left(x,y\right)$ переменные $x$ и $y$ заменить на $t\cdot x$ и $t\cdot y$ соответственно. Если после элементарных тождественных преобразований удается вернуться к той же функции $f\left(x,y\right)$, то данное дифференциальное уравнение является однородным и $ f (x,y) = f (x/y)$. Если добиться этого оказалось невозможным, то данное дифференциальное уравнение должно решаться иным методом.
  2. Находим $f\left(u\right)$, выполнив для функции $f (x/y)$ замену $y=u\cdot x$, после чего записываем функцию $f\left(u\right)-u$.
  3. Находим интеграл $I=\int \frac$ и записываем общее решение в виде $I=\ln \left|x\cdot C\right|$.
  4. Выполняем обратную замену $u=\frac$ и проводим упрощающие тождественные преобразования.
  5. Находим особые решения, которые могли быть утрачены при разделении переменных.

Решение типичных задач

Найти общее решение дифференциального уравнения $y’=2+\frac $.

По внешнему виду данного дифференциального уравнения его можно сразу отнести к однородному.

Для функции $f (x/y)=2+\frac $ выполняем замену $y=u\cdot x$ и находим $f\left(u\right)=2+\frac =2+u$. Записываем функцию $f\left(u\right)-u=2+u-u=2$.

Записываем общее решение в виде $\frac <2>=\ln \left|x\cdot C\right|$.

Выполняем обратную замену $u=\frac $ и получаем $\frac <2\cdot x>=\ln \left|x\cdot C\right|$ или $y=2\cdot x\cdot \ln \left|x\cdot C\right|$.

Так как $f\left(u\right)-u=2$, то особых решений данное дифференциальное уравнение не имеет.

Найти общее решение дифференциального уравнения $x\cdot y’=5\cdot y+x$.

Приводим данное дифференциальное уравнение к стандартному виду $y’=5\cdot \frac +1$, после чего можно сделать вывод, что оно является однородным.

Для функции $f (x/y)=5\cdot \frac +1$ выполняем замену $y=u\cdot x$ и находим $f\left(u\right)=5\cdot \frac +1=5\cdot u+1$.

Записываем функцию $f\left(u\right)-u=5\cdot u+1-u=4\cdot u+1$.

Находим интеграл $I=\int \frac =\int \frac <4\cdot u+1>=\frac<1> <4>\cdot \ln \left|4\cdot u+1\right|$.

Записываем общее решение в виде $\frac<1> <4>\cdot \ln \left|4\cdot u+1\right|=\ln \left|x\cdot C\right|$, откуда $\ln \left|4\cdot u+1\right|=\ln \left|x\cdot C\right|^ <4>$; $4\cdot u+1=x^ <4>\cdot C^ <4>$ или просто $4\cdot u+1=C\cdot x^ <4>$.

Выполняем обратную замену $u=\frac $ и получаем $4\cdot \frac +1=C\cdot x^ <4>$.

Таким образом, общее решение имеет вид: $4\cdot y+x=C\cdot x^ <5>$.

Решая уравнение $f\left(u\right)-u=4\cdot u+1=0$ или $4\cdot \frac +1=0$, находим особое решение $y=-\frac <4>$. Проверка подстановкой в данное дифференциальное уравнение $x\cdot \left(-\frac<1> <4>\right)=5\cdot \left(-\frac <4>\right)+x$ показывает, что особое решение $y=-\frac <4>$ удовлетворяет данному дифференциальному уравнению.

Однако это же решение можно получить из общего решения $4\cdot y+x=C\cdot x^ <5>$, положив в нём $C=0$.

Таким образом, окончательный результат: $4\cdot y+x=C\cdot x^ <5>$.

Уравнения, приводящиеся к однородным

При определенных условиях дифференциальное уравнение вида $y’=\frac \cdot x+b_ <1>\cdot y+c_ <1>> \cdot x+b_ <2>\cdot y+c_ <2>> $, в котором $a_ <1>$, $b_ <1>$, $c_ <1>$, $a_ <2>$, $b_ <2>$, $c_ <2>$ — постоянные коэффициенты, может быть приведено к однородному.

Если $\Delta \equiv \left|\begin > & > \\ > & > \end\right|\ne 0$, то приведение его к однородному достигается с помощью замен $x=m+\alpha $ и $y=n+\beta $, где постоянные $\alpha $ и $\beta $ следует выбрать как результат решения системы $\left\<\begin \cdot \alpha +b_ <1>\cdot \beta =-c_ <1>> \\ \cdot \alpha +b_ <2>\cdot \beta =-c_ <2>> \end\right. $.

Так как $\Delta \ne 0$, то эта система имеет единственное решение, которое проще всего найти по формулам Крамера.

Используя найденные выражения для $x=m+\alpha $ и $y=n+\beta $, получим дифференциальное уравнение $\frac =\frac \cdot m+b_ <1>\cdot n> \cdot m+b_ <2>\cdot n> $, которое является однородным.


источники:

http://mathdf.com/dif/ru/

http://spravochnick.ru/matematika/differencialnye_uravneniya/odnorodnye_uravneniya_pervogo_poryadka/