Решить систему уравнений методом квадратных корней

Решить систему уравнений методом квадратных корней

Обсуждение и решение задач по математике, физике, химии, экономике

Часовой пояс: UTC + 3 часа [ Летнее время ]

Часовой пояс: UTC + 3 часа [ Летнее время ]новый онлайн-сервис
число, сумма и дата прописью

Введение в анализ

Теория очередей (СМО)

Страница находится по новому адресу

Часовой пояс: UTC + 3 часа [ Летнее время ]

МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ.

Метод квадратных корней.

Метод квадратных корней используется для решения линейной системы:

У которой матрица А симметрическая, т.е.

Он является более экономным и удобным по сравнению с методами решения систем общего вида, рассмотренными ранее.

Решение системы осуществляется в два этапа.

Прямой ход. Представим матрицу А в виде произведения двух взаимно транспонированных треугольных матриц:

Перемножая матрицы Т’ и Т и приравнивая матрице A, получим следующие формулы для определения

После того, как матрица Т найдена, систему заменяем двумя эквивалентными ей системами с треугольными матрицами:

Обратный ход. Записываем в развернутом виде системы:

Отсюда последовательно находим:

При вычислениях применяется обычный контроль с помощью сумм, причем при составлении суммы учитываются все коэффициенты соответствующей строки.

Заметим, что при действительных могут получиться чисто мнимые . Метод применим и в этом случае .

Метод квадратных корней дает большой выигрыш во времени по сравнению с рассмотренными ранее методами, так как, во-первых, существенно уменьшает число умножений и делений (почти в два раза для больших n), во-вторых, позволяет накапливать сумму произведений без записи промежуточных результатов.

Задание. Решить систему линейных уравнений методом квадратных корней.

Провести эту работу в SMathStudio.

Схема Халецкого.

Рассмотрим систему линейных уравнений, записанную в матричном виде:

Где — квадратная матрица (i, j = 1, 2, . , n) и

Представим матрицу А в виде произведения А=ВС, где

Тогда элементы будут определяться по формулам

Отсюда искомый вектор х может быть вычислен из цепи уравнений

Так как матрицы B и С треугольные, то системы легко решаются, а именно:

Из формул видно, что числа выгодно вычислять вместе с коэффициентами Эта схема вычислений называется схемой Халецкого. В схеме применяется обычный контроль с помощью сумм.

Схема Халецкого удобна для работы на клавишных вычислительных машинах, так как в этом случае операции «накопления» можно проводить без записи промежуточных результатов.

Задание. Решить систему линейных уравнений методом Халецкого.

Провести эту работу в SMathStudio.

Метод простой итерации

Пусть система линейных уравнений

Каким-либо образом приведена к виду

где С – некоторая матрица, а f – вектор-столбец.

Исходя из произвольного вектора ,

сторим итерационный процесс

или в развернутой форме

Производя итерации, получим последовательность векторов

Доказано, что если элементы матрицы С удовлетворяют одному из условий

то процесс итерации сходится к точному решению системы х при любом начальном векторе , т.е.

Таким образом, точное решение системы получается лишь в результате бесконечного процесса и всякий вектор из полученной последовательности является приближенным решением. Оценка погрешности этого приближенного решения дается одной из следующих формул:

Эти оценки можно усилить соответственно так:

Процесс итераций заканчивают, когда указанные оценки свидетельствуют о достижении заданной точности.

Начальный вектор может быть выбран, вообще говоря, произвольно. Иногда берут Однако наиболее целесообразно в качестве компонент вектора взять приближенные значения неизвестных, полученные грубой прикидкой.

Первый способ. Если диагональные элементы матрицы А отлины от нуля, т. е.

то систему можно записать в виде:

В этом случае элементы матрицы С определяются следующим образом:

и тогда условия приобретают вид:

Неравенства будут выполнены, если диагональные элементы матрицы А удовлетворяют условию:

т.е. если модули диагональных коэффициентов для каждого уравнения системы больше суммы модулей всех остальных коэффициентов (не считая свободных членов).

Второй способ покажем на примере.

Вообще говоря, для любой системы с невырожденной матрицей существуют сходящиеся итерационные методы решения, но далеко не всегда они удобны для практических вычислений.

Если метод итераций сходится, он дает следующие преимущества по сравнению с методами, рассмотренными выше.

1) Если итерации сходятся достаточно быстро, т. е. если для решения системы требуется менее n итераций, то получаем выигрыш во времени, так как число арифметических действий, необходимых для одной итерации, пропорционально n 2 , а общее число арифметических действий в методе Гаусса, например, пропорционально n 3 .

2) Погрешности округления в методе итераций сказываются значительно меньше, чем в методе Гаусса. Кроме того, метод итераций является самоисправляющимся, т. е. отдельная ошибка, допущенная в вычислениях, не отражается на окончательном результате, так как ошибочное приближение можно рассматривать как новый начальный вектор.

Последнее обстоятельство часто используется для уточнения значений неизвестных, полученных методом Гаусса.

3) Метод итераций становится особенно выгодным при решении систем, у которых значительное число коэффициентов равно нулю. Такие системы появляются, например, при решении уравнений в частных производных.

4) Процесс итераций приводит к выполнению однообразных операций и сравнительно легко программируется на ЭВМ.

Задание. Решить систему линейных уравнений методом простых итераций.

Провести эту работу в SMathStudio.

Метод Зейделя.

Метод Зейделя является модификацией метода простой итерации. Он заключается в том, что при вычислении (k + 1)-го приближения неизвестного xi при i>1 используются уже вычисленные ранее (k + 1)-е приближения неизвестных Таким образом, для системы вычисления по методу Зейделя ведутся по формулам:

Указанные в методе простой итерации условия сходимости остаются верными и для метода Зейделя. Обычно метод Зейделя дает лучшую сходимость, чем метод простой терации, хотя это бывает не всегда. Кроме того, метод Зейделя может оказаться более удобным при программировании, так как при вычислении нет необходимости хранить значения

Задание. Решить систему линейных уравнений методом Зейделя.

Метод квадратных корней для симметричной матрицы при решении систем линейных алгебраических уравнений

Министерство образования и науки Российской Федерации

Новосибирский государственный технический университет

Кафедра экономической информатики

по дисциплине «Численные методы»

на тему: «Метод квадратных корней для симметричной матрицы при решении СЛАУ»

1. Математическая постановка задачи

2. Описание программного обеспечения

3. Описание тестовых задач

4. Анализ результатов. Выводы

Список использованной литературы

В данной работе мы будем исследовать метод квадратных корней для симметричной матрицы при решении систем линейных алгебраических уравнений (СЛАУ).

В жизни, очень часто приходится описывать состояние различных объектов, в том числе и экономических с помощью математических моделей. После того, как объект описан такой моделью, очень часто необходимо найти его состояние равновесия.

Именно тогда, чтобы найти это состояние, приходится решать систему алгебраических уравнений. В нашем случае система состоит из n линейных уравнений с n неизвестными, и ее можно описать так:

Также данную систему можно записать и в матричном виде:

Тогда мы будем иметь матрицу коэффициентов А:

,

столбец свободных членов уравнений f:

,

и столбец неизвестных х:

.

Чтобы данная СЛАУ имела единственное решение, нужно, чтобы определитель матрицы коэффициентов А не был равен нулю (det(A))¹0.

Данную систему можно решить многими методами. Например, методом Гаусса. Решение этой системы методом Гаусса потребует выполнить

действий,

где n – число неизвестных в уравнении. А это довольно таки трудоемко, особенно при больших порядках числа n.

Еще одним точным методом для решения данных СЛАУ является рассматриваемый в данной работе метод квадратных корней для симметричной матрицы А.

Изучать данный метод мы будем следующим образом. Сначала рассмотрим математическую постановку задачи для метода квадратных корней при решении СЛАУ. В данном разделе будет полностью описана математическая модель метода. Затем рассматривается разработанная реализация данного метода в среде MatLab 7.0. После того, как метод будет реализован, можно провести анализ точности этого метода. Анализ будет основываться на исследовании влияния мерности матрицы А, ее обусловленности, разреженности на точность полученного решения. По результатам исследования будет приведен график зависимости точности полученного решения от мерности матрицы А.

метод решение корень симметричная матрица

1. Математическая постановка задачи

Метод квадратных корней используется для решения линейной системы вида Ах=f (1.1), в которой матрица А является симметричной, т.е. аij=aji , где (i, j = 1, 2, …, n).

Данный метод является более экономным и удобным по сравнению с решением систем общего вида. Решение системы осуществляется в два этапа.

Прямой ход. Представим матрицу А в виде произведения двух взаимно транспонированных треугольных матриц:

где , а .

Перемножая матрицы T¢ и T и приравнивая матрице A, получим следующие формулы для определения tij:

(1.3)

После того, как матрица Т найдена, систему (1.1) заменяем двумя эквивалентными ей системами с треугольными матрицами

Обратный ход. Записываем в развернутом виде системы (1.4):

(1.5)

(1.6)

И из этих систем (1.5) и (1.6) последовательно находим

(1.7)

При вычислениях применяется обычный контроль с помощью сумм, причем при составлении суммы учитываются все коэффициенты соответствующей строки.

Заметим, что при действительных aij могут получиться чисто мнимые tij. Метод применим и в этом случае.

Метод квадратных корней дает большой выигрыш во времени по сравнению с другими методами (например, методом Гаусса), так как, во-первых, существенно уменьшает число умножений и делений (почти в два раза для больших n), во-вторых, позволяет накапливать сумму произведений без записи промежуточных результатов.

Всего метод квадратных корней требует

операций умножения и деления (примерно в два раза меньше, чем метод Гаусса), а также n операций извлечения корня.

2. Описание программного обеспечения

Метод квадратных корней был реализован через функцию function [e,x]=mkk(a,f) , с входными переменными а и f и выходными e и х, где

а – матрица коэффициентов А,

f – столбец свободных членов,

х – столбец найденных решений,

е – столбец ошибок.

Столбец ошибок вычисляется, как Е=А*х-f.

Текст функции на языке MatLab:

f=f’; %столбец f переводим в строку

n=size(a,1); % вычисляем мерность матрицы А

=0) % проверяем, чтобы система имела единственное решение

if (size(f’,1)==n) %проверяем соответствует ли мерность матрицы А мерности вектора f

t=zeros(n); %создаем матрицу элементов T и заполняем ее нулями


источники:

http://poisk-ru.ru/s3503t3.html

http://kazedu.com/referat/200522

Метод квадратных корней для решения СЛАУ