Решить систему уравнений огэ 2 часть

ОГЭ 2018. Алгебра. 2 часть, задание №21 с решением.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Задание 21. Решите уравнение

Решение. 1. Найдем один из корней кубического уравнения. Для этого рассмотрим числа 1; -1 и 3; -3 (наименьшие делители свободного члена кубического уравнения). Путем подстановки каждого из этих числе вместо x, проверим, является ли один из них корнем (для этого уравнение должно быть равно 0):

— для x=1: — не подходит;

— для x=-1: — не подходит;

— для x= 3: — подходит.

2. Теперь выполним деление кубического многочлена на x-3, воспользовавшись схемой Горнера, имеем:

3. Получаем квадратное уравнение для вычисления оставшихся двух корней:

х 1 = -3, х 2 = -4

Получили три корня 3; -3; -4. Ответ: 3; -3; -4.

Задание 21. Решите уравнение

1. Найдем один из корней кубического уравнения. Для этого рассмотрим числа 1; -1 и 2; -2 (делители свободного члена кубического уравнения). Путем подстановки каждого из этих чисел вместо x, проверим, является ли один из них корнем (для этого уравнение должно быть равно 0):

— для x=1: — подходит (один из корней).

2. Теперь выполним деление кубического многочлена на x-1, воспользовавшись схемой Горнера, имеем:

3. Получаем квадратное уравнение для вычисления оставшихся двух корней:

х 1 = -1, х 2 = -2 Получили три корня -2; -1; 1.

Задание 21. Решите уравнение

Решение. 1. Найдем один из корней кубического уравнения. Для этого рассмотрим числа 1; -1 и 3; -3 (делители свободного члена кубического уравнения). Путем подстановки каждого из этих чисел вместо x, проверим, является ли один из них корнем (для этого уравнение должно быть равно 0):

— для x=1: — не подходит;

— для x=-1: — не подходит;

— для x=3: — подходит (один из корней).

2. Теперь выполним деление кубического многочлена на x-3, воспользовавшись схемой Горнера, имеем:

3. Получаем квадратное уравнение для вычисления оставшихся двух корней:

х 1 = -3, х 2 = -5. Получили три корня -5; -3; 3. Ответ: -5; -3; 3.

Задание 21. Решите уравнение

1. Извлечем кубический корень из левой и правой частей уравнения, получим:

2. Решаем квадратное уравнение, получаем два корня:

Задание 21. Решите уравнение

Возьмем корень третьей степени из обеих частей уравнения, получим:

Решим квадратное уравнение:

Задание 21. Решите уравнение

Возьмем корень кубической степени от обеих частей уравнения, получим:

Решаем квадратное уравнение, имеем два корня:

Задание 21. Решите уравнение .

Решение. 1. Запишем ОДЗ уравнения:

.

2. Упросим уравнение и найдем его корни:

Решаем квадратное уравнение, получаем:

х1 = 6, х2 = -3

Из двух корней только один x=-3 удовлетворяет ОДЗ. Ответ: -3.

Задание 21. Решите уравнение .

1. Запишем ОДЗ уравнения:

.

2. Упростим уравнение, получим:

Решаем квадратное уравнение, получаем корни:

Только один корень x=-4 удовлетворяет ОДЗ.

Задание 21. Решите уравнение x^3 + 6x^2 = 4x + 24.

Решение. Упростим выражение, приведем его к виду:

Данное выражение равно 0, если хотя бы один из сомножителей равен 0, то есть имеем два уравнения:

и

Получаем три корня: -6; -2; 2.

Задание 21. Решите уравнение x^3+4x^2 = 9x +36.

Решение. Сначала преобразуем выражение: в левой части вынесем за скобку, а в правой части вынесем 9 за скобку, получим:

Последнее выражение будет равно нулю, если хотя бы один из множителей равен нулю. То есть, имеем два уравнения:

и

Задание 21. Сократите дробь .

Заметим, что число , а число . Учитывая это, исходное выражение примет вид:

Задание 21. Сократите дробь .

Учитывая, что и , получим:

Задание 21. Решите систему уравнений

Решение. Для решения данной системы можно вычесть второе уравнение из первого, это позволит избавиться от переменной y, получим:

Решаем квадратное уравнение через дискриминант, имеем два корня:

Для каждого из найденных корней найдем соответствующее значение y, подставив во второе уравнение:

и Ответ: (1;-4), (1,8; 0).

Задание 21. Решите систему уравнений

Решение. Так как оба уравнения равны одному и тому же значению y, то их можно приравнять, получим:

, откуда

Полученное выражение будет равно 0, если

или

Найдем теперь значения y для каждого x, имеем:

и

Задание 21. Решите систему уравнений

Решение. Разделим первое уравнение на 2, а второе – на 4, получим:

Видим, что у обоих уравнений есть слагаемое . Чтобы избавиться от него, вычтем из первого уравнения второе:

Теперь вычислим значение y при x=12, подставив x в первое уравнение, имеем:

следовательно, .

Таким образом, имеем решение (2, -2), (2,2). Ответ: (2, -2), (2,2).

Задание 21. Решите систему уравнений

Решение. Разделим второе уравнение на 2, получим систему

и вычтем из первого уравнения второе:

Для значения x=2 найдем соответствующие значения y, подставив x в первое уравнение:

То есть имеем два решения: (2;-3) и (2;3).

Задание 21. Решите уравнение

Решение. Преобразуем уравнение, приведем его к следующему виду:

Полученное выражение будет равно 0, если или, если

Таким образом, получили следующие корни: -4; -3; 2. Ответ: -4; -3; 2.

Задание 21. Решите уравнение .

Решение. Упростим выражение, перепишем его в следующем виде:

Полученное выражение будет равно 0, если или когда

Получили три корня: -5; -4; -3.

Задание 21. Решите систему уравнений

Сложим оба уравнения, получим:

Для найденных корней x вычислим из первой формулы соответствующие значения y, имеем:

— для : ;

— для : .

Получили два решения: (-1;5), (1;5).

Задание 21. Решите систему уравнений

Сложим оба уравнения, получим:

Вычислим соответствующие значения y при x=-2 и 2, подставив эти значения в первую формулу системы:

— при x=-2: ;

— при x=2: .

Имеем следующие решения: (-2; 3) и (2; 3).

Задание 21. Решите неравенство .

Решение. Можно заметить, что данное неравенство будет больше либо равно 0, если

. Преобразуем данное выражение, перепишем его в виде:

Из последнего выражения имеем две точки, делящие числовую ось:

и .

Ответ: .

Задание 21. Решите неравенство .

Решение. Из неравенства можно видеть, что оно будет соблюдаться, если

.

Перепишем его в следующем виде:

Последнее выражение дает две точки, делящие числовую ось:

и

.

Ответ: .

Задание 21. Решите неравенство

Сложим оба уравнения системы, избавимся таким образом от переменной y, получим:

Теперь, для каждого из найденных x, вычислим y из первого уравнения:

Получаем решения: (-1; 8), (1; 8).

Задание 21. Решите неравенство

Сложим оба уравнения системы, избавимся от переменной y, получим:

Для каждого найденного корня x вычислим соответствующее значение y из первого уравнения, имеем:

То есть получили следующие решения: (-2; 1), (2; 1).

Задание 21. Найдите значение выражения 28a-7b+40, если .

Приведем выражение к виду , получим:

Ответ: 5.

Задание 21. Найдите значение выражения 33a-23b+71, если .

Приведем выражение к выражению , получим:

Задание 21. Решите уравнение .

Решение. Учитывая, что слагаемые в уравнении всегда больше либо равны 0, то уравнение будет равно нулю, если каждое из слагаемых равно нулю. Соответственно, получаем следующую систему уравнений:

Из первого уравнения имеем корни

Из второго уравнения, получаем следующие два корня:

Из полученных значений видно, что оба уравнения одновременно будут принимать значение 0 при x=-5.

Задание 21. Решите уравнение .

Решение. Любое число в квадрате всегда больше 0, следовательно, уравнение будет равно 0, если оба слагаемых равны 0. Это условие можно записать в виде следующей системы:

Из первого уравнения получаем два корня:

Из второго уравнения, имеем корни:

Общий корень, при котором оба уравнения переходят в 0, равен -4. Ответ: -4.

Задание 21. Решите уравнение .

Упростим уравнение, приведем его к следующему виду:

Данное уравнение будет равно 0, если

Решаем первое квадратное уравнение, получаем корни:

Оба корня удовлетворяют неравенству , следовательно, они являются решениями уравнения.

Ответ: .

Задание 21. Решите уравнение .

Преобразуем уравнение к виду

Данное уравнение будет равно 0, если

Найдем корни уравнения из квадратного уравнения:

Оба корня не равны 0, следовательно, являются решениями уравнения.

Ответ: .

Задание 21. Решите уравнение .

Сначала преобразуем выражение, получим:

Последнее выражение показывает, что уравнение будет равно 0, если хотя бы один из множителей будет равен 0, то есть имеем 3 уравнения и 3 корня:

Задание №21 ОГЭ по математике

В двадцать втором задании необходимо решить задачу, составив уравнение с неизвестными. Ниже мы приводим алгоритмы решения типовых вариантов.

Алгоритм решения:
  1. Введем неизвестную величину: скорость третьего.
  2. Составим краткую запись в виде таблицы, где разместим данные в графы: скорость, время, расстояние.
  3. Выясняем, на какой

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Решение:

1. Обозначим через x км/ч скорость третьего велосипедиста. 2. Составим таблицу их краткого условия:

v, км/чt, чS, км
1 велосипедист21На 2 ч раньше всех
2 велосипедист15На 1 ч раньше третьего
3 велосипедистх

3. Задача на движение водном направлении, значит, для определения совместной скорости (сближения), необходимо из большей скорости вычитать меньшую. Наибольшая скорость была у третьего велосипедиста, потому что он догонял двух других.

4. Перед тем, как выехал третий велосипедист, первый двигался уже 2 часа. За это время он проехал 42 км, а второй проехал 15 км, поскольку был в пути 1 час. Совместная скорость третьего и второго велосипедистов равна (x-15) км/ч. так как они движутся в одном направлении. Третий велосипедист догнал второго спустя ч после своего выезда.

Совместная скорость третьего и первого велосипедистов равна (x-21)км/ч. Третий велосипедист догнал первого через ч после своего выезда из поселка.

По условию третий велосипедист догнал первого спустя 9 ч после того, как догнал второго.

5. Исходя из этого, составим равенство:

,

Преобразуем полученное уравнение:

6. Получили квадратное уравнение. Решим его:

По условию скорость третьего велосипедиста была наибольшей, значит, второй

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

pазбирался: Даниил Романович | обсудить разбор | оценить

Алгоритм решения:
  1. Введем неизвестные величины: скорость третьего и время его движения.
  2. Составим краткую запись в виде таблицы, где разместим данные в графы: скорость, время, расстояние.
  3. Используя условие, формулы времени или скорости, выражаем через неизвестные величины все остальные.
  4. Исходя из условия, составляем равенства.
  5. Составляем и решаем систему уравнений.
  6. Определяем величины, которые еще нужно найти.
  7. Записываем ответ.
Решение:

1. Пусть x км/ч – скорость третьего велосипедиста, а t ч – время, за которое он догнал второго велосипедиста.

2. Составим таблицу данных условия:

v, км/чt, чs, км
1 велосипедист15t +7
2 велосипедист10t +1
3 велосипедистхt

3. До места встречи со вторым велосипедистом третий проехал x·t км.

Скорость второго велосипедиста 10 км/ч. В пути он находился t + 1 часов к моменту встречи с третьим велосипедистом. Тогда в момент встречи велосипедисты находились на расстоянии 10·(t + 1) км от поселка. Расстояния эти одинаковы, значит, x·t = 10·(t + 1).

Первого велосипедиста третий догонит через t + 5 ч – время, за которое он догнал первого велосипедиста после второго, тогда до места встречи с первым велосипедистом третий проехал x·(t + 5) км.

Первый велосипедист ехал со скоростью 15 км/ч и был в пути до встречи с третьим t + 7 часов, потому как выехал он на 2 часа раньше. Расстояние, которое проехал первый велосипедист, равно 15·(t + 7) км.

Получаем еще одно равенство: x·(t + 5) = 15·(t + 7)

4. Составляем систему уравнений:

5. Решаем полученную систему, преобразовав каждое из уравнений: Вычитаем из второго уравнение первое, получаем

Подставляем вместо x в первое уравнение системы правую часть равенства и решаем полученное уравнение.

(t + 19)·t = 10t + 10

t 2 + 19t = 10t + 10

По формуле дискриминанта и корней:

D = 9 2 — 4·1·(-10) = 81 + 40 = 121

Первый ответ не может удовлетворять условию задачи, поскольку время не может иметь отрицательных значений. Следовательно,

x = t + 19 = 1 + 19 = 20

Скорость третьего велосипедиста 20 км/ч.

pазбирался: Даниил Романович | обсудить разбор | оценить

Алгоритм решения:
  1. Введем неизвестные величины: скорость третьего и время его движения.
  2. Составим краткую запись в виде таблицы, где разместим данные в графы: скорость, время, расстояние.
  3. Используя условие, формулы времени или скорости, выражаем через неизвестные величины все остальные.
  4. Исходя из условия, составляем равенства.
  5. Составляем и решаем систему уравнений.
  6. Определяем величины, которые еще нужно найти.
  7. Записываем ответ.
Решение:

1. Пусть x км/ч – скорость третьего велосипедиста, а t ч – время, за которое он догнал второго велосипедиста. 2. Составим таблицу данных условия:

v, км/чt, чs, км
1 велосипедист24t +9
2 велосипедист21t +1
3 велосипедистхt

3. До места встречи со вторым велосипедистом третий проехал x·t км. Второй велосипедист до момента, когда его догонит третий велосипедист, двигался t + 1 часов . Он проехал до места встречи 21·(t + 1) км. Расстояния, пройденные велосипедистами, одинаковы. Получим первое равенство x·t = 21·(t + 1). Третий велосипедист до момента встречи с первым велосипедистом после встречи о вторым, ехал t + 9 ч тогда до места встречи с первым велосипедистом он проехал расстояние x·(t + 9) км. Первый велосипедист до встречи с третьим ехал t + 11 часов, поскольку до момента выезда третьего, уже проехал 2 часа. До места встречи он проехал 24·(t + 11) км. Расстояния одинаковы. Тогда получим еще одно равенство: x·(t + 9) = 24·(t + 11) Составим систему уравнений для решения задачи: Решим ее, раскрыв скобки и преобразовав каждое уравнение: Далее используем метод вычитания, откуда получим:

Подставив выражение для x в первое уравнение: Получили квадратное уравнение.

t 2 + 81t = 63t + 63

t 2 + 18t – 63 = 0

D = 18 2 — 4·1·(-63) = 324 + 252 = 576

Первое значение не подходит, поскольку время по условию не может иметь отрицательные значения. Значит, Таким образом, скорость третьего велосипедиста 28 км/ч.Ответ: 28

pазбирался: Даниил Романович | обсудить разбор | оценить

Пусть искомое расстояние равно x км. Скорость лодки при движении против течения равна 4 км/ч, при движении по течению равна 8 км/ч. Время, за которое лодка доплывёт от места отправления до места назначения и обратно, равно

часа.

Из условия задачи следует, что это время равно 3 часам. Составим уравнение:

Решая уравнение, получаем x = 8.

pазбирался: Даниил Романович | обсудить разбор | оценить

Алгоритм решения:
  1. Находим число процентов (или долю) твердого вещества в свежих фруктах. Находим эту величину в кг.
  2. Вычисляем кол-во процентов твердого вещества в сушеных фруктах.
  3. Составляем пропорцию и определяем общую массу сушеных фруктов.
Решение:

В сушеных фруктах масса твердого вещества, по сравнению со свежими, не меняется (а только снижается объем воды). Поэтому в искомой массе сухих фруктов мякоти тоже будет 4,2 кг. Но в процентном соотношении эта масса составит 100%–30%=70% (30% по условию приходится на воду). Искомая же (общая) масса сухих фруктов в данном случае – это 100%.

Тогда обозначим искомую массу через Х и составим пропорцию: 4,2 кг – 70% Х – 100%

Решим эту пропорцию:

pазбирался: Даниил Романович | обсудить разбор | оценить

Алгоритм решения:
  1. Вводим переменные-обозначения для скорости наполнения резервуара (л/мин) и для времени наполнения (мин). Выражаем через соответствующие переменные параметры наполнения для 1-й и 2-й труб.
  2. Составляем систему уравнений (1-е уравнение для первой трубы, 2-е – для второй).
  3. Решаем систему.
Решение:

Обозначим через х скорость наполнения 1-й трубы (это наша искомая величина). Тогда скорость наполнения 2-й трубы равна (х+5).Обозначим через t время наполнения 2-й трубы. Тогда время наполнения 1-й трубы составит (t+2).

Через каждую из труб должно пройти 200 л воды. Для 1-й трубы получим:

Аналогично для 2-й трубы:

Из уравнения для 2-й трубы выразим t через х:

Подставим полученное для t выражение в уравнение для 1-й трубы: Решим это уравнение и найдем искомую величину:

Корень х2 не может быть принят в качестве ответа, поскольку он не удовлетворяет условию (скорость наполнения резервуара не может быть отрицательной величиной).

Значит, искомая скорость наполнения равна 20 л/мин.

pазбирался: Даниил Романович | обсудить разбор | оценить

Составим для удобства решения таблицу, в которую внесем данные из условия задачи, обозначив переменной х неизвестную величину – скорость 1 автомобиля:

СкоростьВремяРасстояние
1 автомобильх800 х . .800
2 автомобильх – 36800 х − 36 . .800

Пояснения к заполнению таблицы:

Так как мы обозначили за х скорость 1 авто, значит скорость 2 авто будет на 36 км/ч меньше.

Расстояние у каждого авто будет 800 км.

Для нахождения времени надо расстояние разделить на скорость, поэтому мы получили дроби с переменной в знаменателе.

Зная, что первый прибывает к финишу на 5 ч раньше второго, составим и решим уравнение:

800 х − 36 . . − 800 х . . = 5

Приведем к общему знаменателю х(х-36) наше уравнение и решим его:

800х – 800х+28800=5х 2 – 180

5х 2 – 180 – 28800 =0; разделим на 5 каждый коэффициент:

Решим полученное квадратное уравнение

D=b 2 – 4ac=36 2 – 4 ∙ ( − 5760 ) =24336

х1,2= − b ± √ D 2 a . . = 36 ± 156 2 . .

Отсюда х1=96, а х2 не удовлетворяет условию задачи, так как оно отрицательное, а скорость не может быть выражена отрицательным числом.

Значит, скорость первого автомобиля 36 км/ч

pазбирался: Даниил Романович | обсудить разбор | оценить

ОГЭ по математике: 2 часть

Смотрите бесплатные видео-уроки по теме “ОГЭ 2 часть” на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

На этой странице я буду публиковать бесплатные видео-уроки по теме 2 часть ОГЭ по математике.

Задание 21: уравнения

Для того, чтобы научиться решать уравнения в 21 задании во 2 части ОГЭ по математике необходимо сначала научиться решать самые простые уравнения:


источники:

http://spadilo.ru/zadanie-21-oge-po-matematike/

http://epmat.ru/oge-po-matematike-2-chast/