Решить уравнение 7 класс разложить на множители

Решение уравнений методом разложения на множители

Решение уравнений разложения на множители (метод расщепления) – это способ решения уравнений при котором мы стремимся уравнение свести их к виду:

а затем каждую скобку приравнять к нулю и решить как отдельное уравнение.

Вынесем за скобку икс.

Разобьем уравнение на два простейших.

В первом корень уравнения уже понятен, во втором надо перенести \(5\) в правую сторону.

Решение методом разложения на множители основывается на простой идее:

В результате умножения ноль можно получить, только если один из множителей равен нулю.

Попробуйте придумать два числа, которые при умножении дают ноль. Вы убедитесь, что хотя бы одно из них обязательно должно быть нулем.

Этот метод решения уравнений один из самых популярных, поэтому освоить его очень важно для тех, кто планирует иметь четверки и пятерки. А для освоения этого метода, конечно, надо уметь раскладывать на множители как Бог: знать все формулы сокращенного умножения, легко выносить множители за скобки, уметь применять метод группировки и т.д. Подробнее о всех способах разложения на множители смотри здесь .

Пример(задание из ОГЭ). Решите уравнение \(x^3+4x^2-4x-16=0\).
Решение:

Перед нами кубическое уравнение.
Применим метод группировки: из первой пары слагаемых вынесем \(x^2\), а из второй – минус четверку.

Урок по алгебре в 7-м классе по теме: «Решение уравнений с применением приемов разложения многочлена на множители»

Разделы: Математика

Ребята, достаточно долго овладевая приёмами разложения многочлена на множители, подошли к моменту, когда необходимо систематизировать и обобщить изученные способы, попытаться сделать новые открытия и самое главное: найти интересное применение разнообразных приёмов разложения на множители к решению порой одинаковых по смыслу уравнений.

1. Что, значит, разложить многочлен на множители?

2. В каком случае произведение множителей равно 0?

3. Степень, какого числа равна нулю? 1??

4. Какие приёмы разложения на множители вам известны? (Вынесение общего множителя за скобки, группировка слагаемых с последующем вынесением общего множителя, с помощью формул сокращенного умножения).

5. Чему равны квадрат суммы, разности двух слагаемых?

6. Чему равна разность квадратов двух слагаемых?

На доске записаны уравнения:

По какому признаку можно разбить эти уравнения в группы? (Уравнения, содержащие многочлен второй степени. Уравнения, содержащие многочлен выше второй степени. Уравнение, содержащее многочлен второй степени, коэффициенты которого периодические дроби).

Нам предстоит решить эти уравнения, подбирая непохожие способы решения, несмотря порой на похожесть уравнений.

Предлагаю учащимся решить уравнение двумя способами. Вызываю к доске двух учеников.

Один ученик решает уравнение разбиением одночлена 6х на сумму двух одночленов, а другой – применением формулы сокращённого умножения – квадрата суммы:

Вопрос: Какой способ оказался более рациональным? (Конечно второй). Как его можно назвать?

(Выделение полного квадрата суммы)

Обсуждаем решение уравнения .

Можно ли решить уравнение, разбивая одно из слагаемых на два?

(да,)

А выделением полного квадрата суммы?

(затруднительно, так как, число 3 не является квадратом никакого рационального числа)

И всё-таки попробуем выделить полный квадрат суммы: дополните сумму первых двух слагаемых до квадрата суммы.

Как можно разложить многочлен в левой части уравнения на множители? (По формуле разности квадратов).

Сообразите, можно ли рассуждая аналогично решить уравнение ?

(Неудобное в данном случае число 5).

И все-таки, попробуем строго следовать формуле квадрата суммы при выделении полного квадрата:

Обратите внимание на коэффициенты уравнения . Какую закономерность можно заметить?

(Одинаково читаются слева направо)

Что происходит с показателями переменной x?

(Уменьшаются на один)

Выскажите предположение для многочлена в левой части уравнения.

(Многочлен х 4 +4х 3 +6х 2 +4х+1 есть (х+1) 4 ). Обоснуйте это.

(Построим треугольник Паскаля

14641 4-ая строка содержит коэффициенты возведения в 4-ую степень двучлена (х+1)

Итак, какой вид примет уравнение? Решите его устно.

Решите устно уравнение

Какими числами являются коэффициенты уравнения

(Периодическими десятичными дробями)

Обратите периодические дроби в обыкновенные и решите, получившееся уравнение.

(Правило обращения периодической десятичной дроби в обыкновенную: чтобы периодическую десятичную дробь обратить в обыкновенную, надо из числа, стоящего до второго периода, вычесть число, стоящее до первого периода, и сделать эту разность числителем, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде и после девятки дописать столько нулей, сколько цифр между запятой и первым периодом)

(Подберите рациональный способ решения и найдите корни уравнения, х=1 или )

Вновь обратимся к уравнению . Решим это уравнение методом неопределённых коэффициентов:

Сравните значения найденных корней со значениями переменных b и d. (Они противоположны)

Найденные корни подтверждают мысль о том, что независимо от способа решения корни не меняются.

Чем уравнение похоже на предыдущее?

(Коэффициент при х 2 равен 1)

Попробуем решить это уравнение устно, не применяя ни один из рассмотренных приёмов, но

принимая во внимание некоторые рассуждения в предыдущем случае:

Запишите разложение многочлена в виде произведения двучленов:

Тогда, скажите чему, будут равны значения выражений и по аналогии с предыдущими рассуждениями?

( Легко догадаться, что или наоборот).

Сообразите, чему будут равны корни уравнения?

Устно решите уравнения:

1. С каким новым способом решения квадратных уравнений вы познакомились?

(Выделение полного квадрата суммы или разности)

2. Как вы думаете, почему этот способ не всегда удобен?

(Например, в уравнении 3х 2 -2х-1=0 3х 2 не является квадратом рационального выражения)

3. Какое открытие вы сделали, применяя метод неопределённых коэффициентов для

решения квадратных уравнений, если коэффициент при равен 1?

(Чтобы найти корни, надо сначала найти два таких числа в и с, чтобы их сумма была равна второму коэффициенту, а произведение – третьему слагаемому. А корни будут равны числам, противоположным числам .

В 8 классе вы познакомитесь с ещё одним способом решения квадратных уравнений – по формулам. Узнаете, кто такой Франсуа Виет и какое отношение он имеет к нашему открытию.

Решить уравнение 7 класс разложить на множители

Определение 1. Квадратным уравнением называют уравнение вида

где коэффициенты а, b, с — любые действительные числа, причем а ≠ 0.

Коэффициенты а, b, с различают по названиям: апервый, или старший, коэффициент; bвторой коэффициент, или коэффициент при х; ссвободный член.

Определение 2. Квадратное уравнение называют приведенным, если его старший коэффициент равен 1; квадратное уравнение называют неприведенным, если старший коэффициент отличен от 1.

— неприведенное квадратное уравнение (старший коэффициент равен 2), а уравнение

— приведенное квадратное уравнение.

Кроме приведенных и неприведенных квадратных уравнений различают также полные и неполные уравнения.

Определение 3. Полное квадратное уравнение — это квадратное уравнение, в котором присутствуют все три слагаемых; иными словами, это уравнение, у которого коэффициенты b и с отличны от нуля. Неполное квадратное уравнение — это уравнение, в котором присутствуют не все три слагаемых; иными словами, это уравнение, у которого хотя бы один из коэффициентов b, с равен нулю.

Обратите внимание: об ах 2 речи нет, этот член всегда присутствует в квадратном уравнении.

Опрелеление 4. Корнем квадратного уравнения

называют всякое значение переменной х, при котором квадратный трехчлен

обращается в нуль; такое значение переменной х называют также корнем квадратного трехчлена.

Можно сказать и так: корень квадратного уравнения

— это такое значение х, подстановка которого в уравнение обращает уравнение в верное числовое равенство 0 = 0.

Решить квадратное уравнение — значит найти все его корни или установить, что корней нет.

Сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать. Рассмотрим несколько таких уравнений.

Пример 1. Решить неполные квадратные уравнения:

Поэтому либо х = 0, либо 2х — 7 = 0, откуда находим х = 3,5. Итак, уравнение имеет два корня: х1 = 0, х2 = 3,5.

Уравнение имеет два корня: х1 = 0, х2 = 5.

Ранее, мы уже говорили о том, что уравнение вида х 2 = а, где а > О, имеет два корня: и . Значит, для уравнения х 2 = 16 получаем х1 = 4, x2 = — 4 (мы учли, что ).

Допускается более экономная запись:

Уравнение имеет два корня: И в этом случае можно записать короче

Так как выражение Зx 2 неотрицательно при любых значениях х, то уравнение Зx 2 = — 10 не имеет корней. Иными словами, нет ни одного числа, подстановка которого вместо переменной х обратила бы это уравнение в верное числовое равенство.

Иногда в таких случаях уточняют: нет действительных корней. Дело в том, что в математике, кроме действительных чисел, рассматриваются так называемые мнимые числа; мнимые корни у этого уравнения есть.

е) Если 5x 2 = 0, то x 2 = 0, откуда x = 0 единственный корень уравнения.
Этот пример показывает, как решаются неполные квадратные уравнения:

1. Если уравнение имеет вид ах 2 = 0, то оно имеет один корень х = 0.

2. Если уравнение имеет вид , то используется метод разложения на множители: ; значит, либо x = 0, либо ах + b = 0. В итоге получаем два корня:

3. Если уравнение имеет вид , то его преобразуют к виду и далее . В случае, когда — отрицательное число, уравнение не имеет корней (значит, не имеет корней и исходное уравнение ). В случае, когда

— положительное число, т. е. , где m > 0, уравнение х 2 = m имеет два корня: (в этом случае, как мы условились выше, допускается более короткая запись:
).

Неполное квадратное уравнение, как мы только что видели, может иметь два корня, один корень, ни одного корня. То же можно сказать и о полном квадратном уравнении. Почему?

Мы с вами знаем, что графиком функции является парабола. Корнями квадратного уравнения служат абсциссы точек пересечения параболы с осью х. Парабола может пересекать ось х в двух точках, может касаться оси х, т. е. иметь с ней лишь одну общую точку, может вообще не пересекаться с осью х (рис. 92, а, б, в). Это значит, что квадратное уравнение может иметь либо два корня, либо один корень, либо вообще не иметь корней.

Конечно, неплохо знать, сколько корней имеет квадратное уравнение, но еще лучше уметь находить эти корни. Если уравнение неполное, то, как мы видели выше, особых проблем не возникает. А если мы имеем полное квадратное уравнение? Ниже на примере одного такого уравнения напомним, какими способами мы пользовались до сих пор, когда приходилось встречаться с квадратным уравнением.

Пример 2. Решить уравнение х 2 — 4х + 3 = 0.

I способ. Рассмотрим квадратный трехчлен х2 — 4х + 3 и разложим его на множители, используя способ группировки; предварительно представим слагаемое — 4х в виде — х — Зх. Имеем

Значит, заданное уравнение можно переписать в виде (х — 1) (х — 3) = 0, откуда ясно, что уравнение имеет два корня; х1 = 1, х2 = 3; при х = 1 обращается в нуль множитель х — 1, а при х = 3 обращается в нуль множитель х — 3.

II способ. Рассмотрим квадратный трехчлен х 2 — 4х + 3 и разложим его на множители, используя метод выделения полного квадрата; предварительно представим слагаемое 3 в виде 4-1. Имеем

Воспользовавшись формулой разности квадратов, получим

Рассуждая, как и в I способе, находим, что .

III способ. Построим график функции :

1) Имеем Значит, вершиной параболы является точка (2; -1), а осью параболы — прямая х = 2.

2) Возьмем на оси х две точки, симметричные относительно оси параболы, например точки х = 1 и х = 3. Имеем ; построим на координатной плоскости точки (1; 0) и (3; 0).

3) Через точки (1; 0), (2; -1), (3;0) проводим параболу (рис. 93).

Корнями уравнения х 2 — 4х + 3 = 0 служат абсциссы точек пересечения параболы с осью х. Таких точек две: (1; 0) и (3; 0). Итак, х1 = 1, х2 = 3.

IV способ. Преобразуем уравнение к виду х 2 — 4х — 3. Построим в одной системе координат графики функций у = х 2 и у = 4х — 3 (рис. 94). Они пересекаются в точках А( 1; 1) и B(3; 9). Корнями уравнения служат абсциссы точек А и B, поэтому х1 = 1, х2 = 3.

V способ. Преобразуем уравнение к виду x 2 + 3 = 4х. Построим в одной системе координат графики функций у = х 2 + 3 и у = 4х (рис. 95). Они пересекаются в точках А (1; 4) и B (3; 12). Корнями уравнения служат абсциссы точек А и B, таким образом,

VI способ. Преобразуем уравнение к виду и далее , т. е. . Построим в одной системе координат параболу у = (х — 2) 2 и прямую у = 1 (рис. 96). Они пересекаются в точках А (1; 1) и B(3; 1). Корнями уравнения служат абсциссы точек А и B, следовательно, .

VII способ. Разделив почленно обе части уравнения на х, получим

Построим в одной системе координат гиперболу прямую у = х — 4. Они пересекаются в точках А (1; -3) и (3; — 1) (рис. 97). Корнями уравнения служат абсциссы точек А и B, значит,

Итак, мы решили уравнение х 2 — 4х + 3 = 0 семью способами. Тем не менее знание этих способов не есть, как говорится, панацея от всех бед. Ведь наши успехи в решении квадратных уравнений зависели до сих пор от наличия одного из двух благоприятных обстоятельств:

1) квадратный трехчлен удавалось разложить на множители;

2) графики, которые мы использовали для графического решения уравнения, пересекались в «хороших» точках.

Надеяться на такие подарки судьбы математики, естественно, не могли. Они искали универсальный способ, пригодный для решения любых квадратных уравнений, и нашли его.


источники:

http://urok.1sept.ru/articles/314202

http://forkettle.ru/vidioteka/estestvoznanie/matematika/181-algebra/algebra-7-9-klassy/1873-algebra-7-9-klassy-19-kvadratnye-uravneniya-razlozhenie-kvadratnogo-trekhchlena-na-mnozhiteli