Решить уравнение дифференциальное уравнение в паскале

Решить уравнение дифференциальное уравнение в паскале

Возможно, ваша ваша проблема уже имеет решение на нашем форуме

Извините — ничего не понял! Уравнение вполне себе легко решается аналитически, и выглядит это так:

1. Записываем в виде y’ — y = 1 + x.
2. Решаем однородное уравнение y’ — y = 0. Его решением, очевидно, является C*exp(x).
3. Частное решение ищем методом вариации постоянной, т.е. в виде C(x)*exp(x). Подставляя в исходное уравнение и интегрируя, находим C(x)=C1-exp(-x)*(x+2).
4. Таким образом, окончательно y=C1*exp(x)-x-2.

И при чем тут Паскаль, программирование, точность и всё такое прочее? Кроме того, полагаю, что Ваше предположение о том, что у=1 имеет какое-то отношение к таинственному «шагу», есть полный абсурд. Скорее всего, у=1 — это значение искомой функции при некотором значении аргумента х (например, при х=0), которое Вы пропустили, и которое требуется для определения константы С1.

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Применения операционного исчисления

Решение задачи Коши для ОДУ с постоянными коэффициентами

Пример 1.

Решить однородное дифференциальное уравнение с постоянными коэффициентами. \begin &x»’+2x»+5x’=0,\\ &x(0)=-1, \,\, x'(0)=2, \,\, x»(0)=0. \end

Записываем изображения для левой и правой частей дифференциального уравнения. Для левой части используем теорему о дифференцировании оригинала: \begin &x(t) \risingdotseq X(p),\\ &x'(t) \risingdotseq pX(p)-x(0)=pX(p)+1,\\ &x»(t) \risingdotseq p^2X(p)-px(0)-x'(0)=p^2X(p)+p-2,\\ &x»'(t) \risingdotseq p^3X(p)-p^2x(0)-px'(0)-x»(0)=p^3X(p)+p^2-2p-0. \end Справа стоит $0$, изображение для него тоже $0$.

Запишем уравнение с изображениями (операторное уравнение). Оно уже будет алгебраическим, а не дифференциальным: \begin p^3X(p)+p^2-2p+2(p^2X(p)+p-2)+5(pX(p)+1)=0. \end И найдем из него неизвестное $X(p)$: \begin X(p)=-\frac. \end Используя теоремы, приемы, таблицы операционного исчисления получим оригинал: \begin X(p) \risingdotseq x(t)=-\displaystyle\frac15-\displaystyle\frac45 e^<-t>\mbox\,2t+\displaystyle\frac35e^<-t>\mbox\,2t. \end

Пример 2.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. \begin x»-2x’-3x=e^<3t>,\\ x(0)=x'(0)=0. \end

Записываем изображения для левой и правой частей дифференциального уравнения. Для левой части используем теорему о дифференцировании оригинала: \begin &x(t) \risingdotseq X(p),\\ &x'(t) \risingdotseq pX(p)-x(0)=pX(p),\\ &x»(t) \risingdotseq p^2X(p)-px(0)-x'(0)=p^2X(p), \end Справа стоит $e^<3t>$, изображение равно $\displaystyle\frac<1>$.

Запишем операторное уравнение: \begin (p^2-2p-3)X(p)=\frac<1>. \end Находим $X(p)$: \begin X(p)=\frac<1><(p-3)^2(p+1)>. \end Используя, например, вторую теорему разложения, получим оригинал: \begin X(p) \risingdotseq \displaystyle\frac14\,te^<3t>-\displaystyle\frac<1><16>\,e^<3t>+\displaystyle\frac<1><16>\,e^<-t>. \end

Пример 3.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. \begin x»+3x’=\mbox\,2t,\\ x(0)=2, \,\, x'(0)=0. \end

Пример 4.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. \begin x»+x’=e^t,\\ x(1)=1, \,\, x'(1)=2. \end Так как начальные условия даны не при $t=0$, сразу применить теорему о дифференцировании оригинала мы не можем. Поставим вспомогательную задачу для функции $y(t)=x(t+1)$: \begin y»+y’=e^,\\ y(0)=1, \,\, y'(0)=2. \end Записываем операторное уравнение \begin (p^2Y(p)-p-2)+(pY(p)-1)=\displaystyle\frac. \end

Решаем полученное уравение: \begin Y(p)=\displaystyle\frac<(p-1)(p^2+p)>+\displaystyle\frac. \end \begin y(t)=\displaystyle\frac12e^+\left(\displaystyle\frac<2>-2\right)e^<-t>+(3-e). \end Со сдвигом на $1$ находим решение исходной задачи: \begin x(t)=y(t-1)=\displaystyle\frac12e^+\left(\displaystyle\frac<2>-2\right)e^<-t+1>+(3-e). \end

Решение задачи Коши для систем линейных ДУ

Пример 5.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. \begin \left\ < \begin&x’ = 2x+8, \\ &y’ = x+4y+1, \\ &x(0)=1,\, y(0)=0. \\ \end \right. \end

Запишем изображения: \begin \begin x(t) \risingdotseq X(p), & x'(t) \risingdotseq p\,X(p)-1, \\ y(t) \risingdotseq Y(p), & y'(t) \risingdotseq p\,Y(p). \end \end \begin 8 \risingdotseq \displaystyle\frac<8>

, \,\, 1 \risingdotseq \displaystyle\frac<1>

. \end

Операторная система уравнений принимает вид: \begin \left\ < \beginpX(p)-1 &= 2X(p)+\displaystyle\frac<8>

, \\ pY(p) &= X(p)+4Y(p)+\displaystyle\frac<1>

.\\ \end \right. \end

Решаем систему, находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: \begin X(p)=\displaystyle\frac\risingdotseq x(t)=-4+5e^<2t>. \end \begin Y(p)=\displaystyle\frac<2p+6>\risingdotseq y(t)=\displaystyle\frac34-\displaystyle\frac52\,e^<2t>+\displaystyle\frac74\,e^<4t>. \end

Пример 6.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. \begin \left\ < \begin&x’ = 2x+8y, \\ &y’ = x+4y+1, \\ &x(0)=1,\, y(0)=0.\\ \end \right. \end

\begin \begin x(t) \risingdotseq X(p), & x'(t) \risingdotseq p\,X(p)-1, \\ y(t) \risingdotseq Y(p), & y'(t) \risingdotseq p\,Y(p),\\ 1 \risingdotseq \displaystyle\frac<1>

. &\\ \end \end

Операторная система уравнений принимает вид: \begin \left\ < \beginpX(p)-1 &= 2X(p)+8Y(p), \\ pY(p) &= X(p)+4Y(p)+\displaystyle\frac<1>

.\\ \end \right. \end

Решаем систему находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: \begin X(p)=\displaystyle\frac\risingdotseq x(t)=\frac49-\frac43\,t+\frac59\,e^<6t>. \end \begin Y(p)=\displaystyle\frac<2(p-1)>\risingdotseq y(t)=-\displaystyle\frac<5><18>+\displaystyle\frac13\,t+\displaystyle\frac<5><18>\,e^<6t>. \end

Пример 7.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. \begin \left\ < \begin&x’-2x-4y = \mbox\, t, \\ &y’+x+2y = \mbox\,t, \\ &x(0)=0,\, y(0)=0.\\ \end \right. \end

Операторная система уравнений принимает вид: \begin \left\ < \begin(p-2)X(p)-4Y(p) &= \frac

, \\ X(p)+(p+2)Y(p) &= \frac<1>.\\ \end \right. \end

Решаем систему находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: \begin X(p)=\displaystyle\frac<2>

+\displaystyle\frac<4>-\displaystyle\frac<2p+3>\risingdotseq x(t)=2+4t-2\,\mbox\,t-3\,\mbox\,t. \end \begin Y(p)=-\displaystyle\frac<2>+\displaystyle\frac<2>\risingdotseq y(t)=-2t+2\,\mbox\,t. \end

Решение ОДУ с помощью интеграла Дюамеля

Введем обозначения:
Уравнение: $x^<(n)>(t)+a_1\,x^<(n-1)>(t)+\ldots+a_n\,x(t)=f(t)$.
Начальные условия: $x(0)=x'(0)=\ldots=x^<(n)>=0$.
Неизвестная функция $x(t)$, имеющая изображение $X(p)$.
Сложная функция в правой части $f(t)$, имеющая изображение $F(p)$.

Запишем алгоритм решения.
1. Решается вспомогательное уравнение $$ y^<(n)>(t)+a_1\,y^<(n-1)>(t)+\ldots+a_n\,y(t)=1.$$ С учетом начальных условий левая и правые части уравнений будут иметь изображения: \begin \begin y(t) & \risingdotseq Y(p),\\ y'(t) & \risingdotseq p\,Y(p),\\ y»(t)& \risingdotseq p^2Y(p),\\ &\cdots\\ y^<(n)>(t)& \risingdotseq p^nY(p). \end \end Вспомогательное операторное уравнение запишем в виде: \begin Y(p)\cdot h(p) = \frac<1>

,\\ h(p)=p^n+a_1p^+\ldots+a_n. \end $$Y(p) \risingdotseq y(t).$$

2. Решается исходное уравнение. Левая часть уравнения совпадает с левой частью вспомогательного, поэтому операторное уравнение записывается так: $$ X(p)\cdot h(p) = F(p),$$ при этом $h(p)$, используя решение вспомогательного уравнения, можно записать в виде \begin h(p)=\frac<1>. \end Тогда $$ X(p) = F(p)\,pY(p).$$ Для нахождения $x(t)$ необходимо найти оригинал для $pY(p)F(p)$, то есть вычислить интеграл из формулы Дюамеля: $$ p F(p) Y(p) \risingdotseq y(0)\cdot f(t)+\int\limits_0^t f(\tau)\,y'(t-\tau)\,d\tau,$$ где $y(t)$ — уже найденное решение вспомогательного уравнения.

Пример 8.

Решить задачу Коши с помощью интеграла Дюамеля. \begin x»+2x’=\frac<1><1+e^<2t>>, \,\, x(0)=0, \,\, x'(0)=0. \end Решаем через интеграл Дюамеля в два этапа, как было описано выше.

2. Исходное уравнение в операторном виде: \begin (p^2+2p)X(p)=F(p). \end Правая часть этого уравнения такая же, как и для вспомогательного. Левую часть $\frac<1><1+e^<2t>>$ обозначим $f(t)$, ее изображение $F(p)$. Тогда \begin X(p)=\frac. \end Решая вспомогательное уравнение, мы находили: \begin (p^2+2p)Y(p)=\frac<1>

\,\, \Rightarrow \,\, p^2+2p=\frac<1>. \end Тогда \begin X(p)=\frac<\frac<1>>=pF(p)Y(p). \end

Теперь по формуле Дюамеля получаем: \begin X(p)=p F(p) Y(p) \risingdotseq x(t)=y(0)\cdot f(t)+\int\limits_0^t f(\tau)\,y'(t-\tau)\,d\tau, \end где $y(t)$ — уже найденное решение вспомогательного уравнения: \begin \begin & y(t)=-\frac14+\frac12t+\frac14 e^<-2t>,\\ & y(0)=0,\\ & y'(t-\tau)=\frac12-\frac12e^<-2(t-\tau)>. \end \end

Решение задачи Коши с правой частью, содержащей функцию Хэвисайда

Пример 9

Решить задачу Коши, когда правая часть дифференциального уравнения содержит составную функцию (выражаемую через функцию Хэвисайда). \begin \left\ < \begin&x»+x=\eta(t)-\eta(t-2), \\ &x(0)=0,\\ &x'(0)=0. \end \right. \end

Запишем изображения для левой и правой частей уравнения: \begin &x»+x \risingdotseq p^2\,X(p)+X(p),\\ &\eta(t)-\eta(t-2) \risingdotseq \frac<1>

-\frac>

. \end Для правой части, содержащей функцию Хэвисайда, воспользовались теоремой запаздывания.

Находим изображение для $\displaystyle\frac<1>$ с помощью теоремы об интегрировании оригинала: \begin &\frac<1>\risingdotseq \mbox\,t \,\, \Rightarrow\\ &\frac<1>\risingdotseq \int\limits_0^t\,\mbox\,\tau\,d\tau=-\mbox\,t+1. \end Тогда изображение для $\displaystyle\frac>$ по теореме запаздывания будет равно: \begin \frac>\risingdotseq (-\mbox\,(t-2)+1)\eta(t-2). \end

Решение заданного уравнения: \begin x(t)= (1-\mbox\,t)\eta(t)-(1-\mbox\,(t-2))\eta(t-2). \end

Пример 10

Решить задачу Коши, когда правая часть дифференциального уравнения задана графически (и выражается через функцию Хэвисайда). \begin \left\ < \begin&x»+4x=f(t). \\ &x(0)=0,\\ &x'(0)=0. \end \right. \end

Запишем аналитическое выражение для $f(t)$ с помощью функции Хэвисайда и найдем ее изображение: \begin &f(t)=2t\eta(t)-4(t-1)\eta(t-1)+2(t-2)\eta(t-2),\\ &F(p)=\frac<2>(1-2e^<-p>+e^<-2p>). \end Операторное уравнение имеет вид: \begin &X(p)(p^2+4)=\frac<2>(1-2e^<-p>+e^<-2p>)\,\, \Rightarrow\\ &X(p)=\frac<2>(1-2e^<-p>+e^<-2p>). \end

Для первого слагаемого найдем оригинал, разложив дробь на сумму простейших: \begin \frac<2>=\frac<1><2p^2>-\frac<2> <4(p^2+4)>\risingdotseq \frac12t-\frac14\,\mbox\,2t. \end Для остальных слагаемых воспользуемся теоремой запаздывания: \begin X(p)\risingdotseq x(t)= \frac12\left(t-\frac12\,\mbox\,2t\right)\eta(t)-\\ -\left((t-1)-\frac12\,\mbox\,2(t-1)\right)\eta(t-1)+\\ +\frac12\left((t-2)-\frac12\,\mbox\,2(t-2)\right)\eta(t-2). \end

Решение задачи Коши с периодической правой частью

Периодическую правую часть тоже очень удобно записывать с помощью функции Хэвисайда.

Пусть $f(t)$ — периодическая с периодом $T$ функция-оригинал. Обозначим через $f_0(t)$ функцию: \begin f_0(t)=\begin f(t),& 0 oplaplace/seminar5_2.txt · Последние изменения: 2021/05/28 18:23 — nvr

Решить уравнение дифференциальное уравнение в паскале

Решение дифференциальных уравнений в символьном виде

Дифференциальными принято называть уравнения, в состав которых входят производные функции у(х), представляющей решение уравнения. Дифференциальные уравнения могут быть представлены в различной форме, например в общеизвестной форме Коши:

Несколько дифференциальных уравнений образуют систему дифференциальных уравнений. Решение таких систем также возможно средствами Mathematica и подробно описано в ряде книг по использованию системы 67. Дифференциальные уравнения и системы дифференциальных уравнений могут быть линейными и нелинейными. Для линейных уравнений обычно существуют решения в аналитическом виде. Нелинейные дифференциальные уравнения в общем случае аналитических решений не имеют, но могут решаться приближенными численными методами.

Дифференциальные уравнения широко используются в практике математических вычислений. Они являются основой при решении задач моделирования — особенно в динамике. Немногие математические системы имеют реализации численных методов решения систем дифференциальных уравнений. Но система Mathematica имеет средства как для символьного, так и для численного решения дифференциальных уравнений и их систем.

Для решения дифференциальных уравнений в символьном виде используются следующие средства:

  • DSolve[eqn, y[x], х] — решает дифференциальное уравнение относительно функций у [ х ] с независимой переменной х;
  • DSolve[, , ]-решает систему дифференциальных уравнений.

У функции DSolve и ее численного варианта NDSolve есть пара опций, на которые следует обратить внимание:

  • DSolveConstants — опция к DSolve, определяющая постоянные интегрирования, которые будут использованы в результате;
  • StartingStepSize — опция к NDSolve, определяющая величину начального шага.

В решении дифференциальных уравнений встречаются постоянные интегрирования. По умолчанию они обозначаются как С [ i ].

Приведем примеры решения дифференциальных уравнений:

DSolve [у» [х] — у’ [х] — 6 у [х] == 0, у [х] , х] <<У[х] ->| е-4хС[1] + С[2] -Cos[2x] -|sin[2x]>>

DSolve [у» [х] + 4 у'[х] == 10 Sin [2 х] , у [х] , х]

DSolve[y'[x] == Sin[Ex] , y[x] , x]

DSolvefz2 w»[z] +zw'[z] — (z2 + l)w[z] ==0, w[z], z]

Как нетрудно заметить, аналитические решения дифференциальных уравнений могут содержать не только элементарные, но и специальные математические функции, что заметно расширяет возможности применения системы Mathematica в решении задач динамического моделирования.

Решение дифференциальных уравнений в численном виде

Многие дифференциальные уравнения не имеют аналитических решений — например, нелинейные. Однако они могут с приемлемой точностью решаться численными методами. Для численного решения систем дифференциальных уравнений используется функция NDSolve:

  • NDSolve [eqns, у, ]— ищет численное решение дифференциальных уравнений .eqns относительно функции у независимой переменной х в интервале от xmin до xmax;
  • NDSolve [eqns, , ]— ищет численные решения относительно функций yi.

MaxSteps — опция к NDSolve, которая определяет максимальное количество шагов.

Часто весьма желательно выводить результаты решения дифференциальных уравнений в графической форме. Рисунок 4.25 поясняет, как это делается при решении системы нелинейных дифференциальных уравнений, описывающих достаточно сложный колебательный процесс.

Нередко решение предпочитают представить на фазовой плоскости. Рисунок 4.26 иллюстрирует такую возможность. Более того, поскольку решается система из трех дифференциальных уравнений, фазовая траектория решения находится в трехмерном пространстве.

Простота задания решения и вывода его результатов в графической форме открывает широкие возможности применения системы для математического моделирования сложных явлений. При этом, в отличие от такого решения с помощью обычных языков высокого уровня (например, Фортран, Бейсик, Паскаль или С), не требуется составления каких-либо программ по реализации численных методов решения систем дифференциальных уравнений, таких как, скажем, метод Рунге— Кутта. Они представлены в виде уже готовых функций.

Рис. 4.25. Решение системы дифференциальных уравнений с выводом решения в виде графиков временных зависимостей

Рис. 4.26. Решение системы дифференциальных уравнений с выводом решения в форме кривых на фазовых плоскостях


источники:

http://vmath.ru/vf5/oplaplace/seminar5_2

http://phys.bspu.unibel.by/static/lib/inf/cmat/mathem4/gl4/index8.htm

04.05.2011, 13:05#2 (permalink)