Решить уравнение дробь с корнем

Решение иррациональных уравнений. Задание В6 (2014)

Иррациональные уравнения, которые встречаются в задании В6 из Открытого банка заданий для подготовки к ЕГЭ по математике имеют такой вид:

Чтобы решить уравнение такого вида, нужно возвести обе части уравнения в квадрат.

Внимание! Возведение в квадрат левой и правой частей уравнения может привести к появлению посторонних корней. Поэтому, после того, как корни уравнения будут найдены, нужно сделать проверку: подставить найденные решения в исходное уравнение и проверить, получим ли мы верное равенство.

Давайте рассмотрим примеры решения иррациональных уравнений из Задания В7.

1. Задание В6 (№ 26656)

Найдите корень уравнения

Возведем в квадрат правую и левую части уравнения:

Сделаем проверку. Для этого подставим число 3 в исходное уравнение:

— верно.

2. Задание В6(№ 26656)

Найдите корень уравнения

Возведем в квадрат правую и левую части уравнения:

Перенесем дробь в левую часть уравнения и приведем к общему заменателю:

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю. Приравняем к нулю числитель:

— верно

3. Задание В6 (№ 26668)

Найдите корень уравнения .

Если уравнение имеет более одного корня, укажите меньший из них.

Возведем в квадрат правую и левую части уравнения:

Получили квадратное уравнение. Решим его:

,

— верно.

— верно.

Оба корня нас устраивают. В ответе требуется указать меньший корень.

Решить уравнение с дробями онлайн

При помощи калькулятора можно решать уравнение с дробями. Для этого просто введите заданные дроби и быстро получите результат. Калькулятор простой в использовании и выдаёт только точный ответ.

Калькулятор

Инструкция

Примечание: π записывается как pi; корень квадратный как sqrt().

Шаг 1. Введите заданный пример, состоящий из дробей.

Шаг 2. Нажмите кнопку “Решить”.

Шаг 3. Получите подробный результат.

Чтобы калькулятор посчитал дроби правильно, вводите дробь через знак: “/”. Например: . Калькулятор посчитает уравнение и даже покажет на графике, почему получился такой результат.

Что такое уравнение с дробями

Уравнение с дробями – это уравнение, в котором коэффициенты являются дробными числами. Линейные уравнения с дробями решается по стандартной схеме: неизвестные переносятся в одну сторону, а известные – в другую.

Рассмотрим на примере:

Дроби с неизвестными переносятся влево, а остальные дроби – вправо. Когда переносятся числа за знак равенства, тогда у чисел знак меняется на противоположный:

Теперь нужно выполнить только действия обеих частей равенства:

.

Получилось обыкновенное линейное уравнение. Теперь нужно поделить левую и правую части на коэффициент при переменной.

Средняя оценка 2.5 / 5. Количество оценок: 66

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение иррациональных уравнений и неравенств.

Этот математический калькулятор онлайн поможет вам решить иррациональное уравнение или неравенство. Программа для решения иррациональных уравнений и неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> sqrt(x) — квадратный корень x
x^(1/n) — корень степени n

Введите иррациональное уравнение или неравенство
Решить уравнение или неравенство

Немного теории.

Решение иррациональных уравнений и неравенств

1. Иррациональные уравнения

Иррациональными называют уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень. Для таких уравнений ищут, как правило, только действительные корни.

Основной метод решения иррациональных уравнений — метод возведения обеих частей уравнения в одну и ту же степень. При этом следует иметь в виду, что возведение обеих частей уравнения в одну и ту же нечётную степень есть равносильное преобразование уравнения, а в чётную — НЕравносильное. Значит, основные принципиальные трудности связаны с возведением обеих частей уравнения в одну и ту же чётную степень, когда из-за неравносильности преобразования могут появиться посторонние корни, а потому обязательна проверка всех найденных корней.

ПРИМЕР 1.
\( \sqrt[\Large6\normalsize] = \sqrt[\Large6\normalsize] <2x-6>\)

Возведя обе части уравнения в шестую степень, получим:
\( x^2-5x = 2x-6 \Rightarrow \)
\( x^2-7x +6= 0 \Rightarrow \)
\( x_1=1, \; x_2=6 \)
Проверка. «Хорошие» корни можно проверить непосредственной подстановкой в исходное уравнение. При x = 1 заданное уравнение принимает вид \( \sqrt[\Large6\normalsize] <-4>= \sqrt[\Large6\normalsize] <-4>\), во множестве действительных чисел такое «равенство» не имеет смысла. Значит, 1 — посторонний корень, он появился по причине расширения ОДЗ уравнения после возведения в шестую степень. При х = 6 заданное уравнение принимает вид \( \sqrt[\Large6\normalsize] <6>= \sqrt[\Large6\normalsize] <6>\) — это верное равенство.
Итак, уравнение имеет единственный корень: х = 6.
Ответ: х = 6

Введя новую переменную \( u=x^2-x\), получим существенно более простое иррациональное уравнение:
\( \sqrt+\sqrt = \sqrt <2u+21>\).
Возведём обе части уравнения в квадрат:
\( (\sqrt+\sqrt)^2 = (\sqrt<2u+21>)^2 \Rightarrow \)
\( u+2 +2\sqrt\sqrt +u+7 = 2u+21 \Rightarrow \)
\( \sqrt <(u+2)(u+7)>= 6 \Rightarrow \)
\( u^2+9u+14=36 \Rightarrow \)
\( u^2+9u-22=0 \Rightarrow \)
\( u_1=2, \; u_2=-11 \)
Проверка найденных значений их подстановкой в уравнение \( \sqrt+\sqrt = \sqrt <2u+21>\) показывает, что \( u_1=2 \) — корень уравнения, а \( u_2=-11 \) — посторонний корень.
Возвращаясь к исходной переменной x, получаем уравнение \( x^2-x=2 \Rightarrow x^2-x-2=0 \), решив которое находим два корня: \( x_1=2, \; x_2=-1 \)
Ответ: 2; -1.

Уединение корня и возведение обеих частей уравнения в квадрат привело бы к громоздкому уравнению. В то же время, если проявить некоторую наблюдательность, можно заметить, что уравнение легко сводится к квадратному. Действительно, умножим обе его части на 2:
\( 2x^2 +6 -2\sqrt <2x^2-3x+2>= 3x+12 \Rightarrow \)
\( 2x^2 -3x +2 -2\sqrt <2x^2-3x+2>-8 = 0 \Rightarrow \)

Введя новую переменную \( y=\sqrt <2x^2-3x+2>\), получим: \( y^2-2y-8=0 \), откуда \( y_1=4, \; y_2=-2 \). Значит, исходное уравнение равносильно следующей совокупности уравнений:
\( \left[\begin \sqrt <2x^2-3x+2>=4 \\ \sqrt <2x^2-3x+2>= -2 \end\right. \)

Из первого уравнения этой совокупности находим: \( x_1=3<,>5; \; x_2=-2 \). Второе уравнение корней не имеет.

Проверка. Так как совокупность уравнений равносильна исходному уравнению, причём второе уравнение этой совокупности корней не имеет, то найденные корни можно проверить подстановкой в уравнение \( \sqrt <2x^2-3x+2>=4\). Эта подстановка показывает, что оба найденных значения x являются корнями этого уравнения, а значит, и исходного уравнения.
Ответ: 3,5; -2.

Областью определения уравнения является луч \( [5; \; +\infty) \). В этой области выражение \( \sqrt \) можно представить следующим образом: \( \sqrt = \sqrt\sqrt \). Теперь уравнение можно переписать так:
\( x+x -5 +2\sqrt\sqrt +2\sqrt +2\sqrt -48 = 0 \Rightarrow \) \( (\sqrt)^2 +2\sqrt\sqrt +(\sqrt)^2 +2(\sqrt+\sqrt) -48 = 0 \Rightarrow \) \( (\sqrt +\sqrt)^2 +2(\sqrt+\sqrt) -48 = 0 \)

Введя новую переменную \( y= \sqrt +\sqrt \), получим квадратное уравнение \( y^2+2y-48=0 \), из которого находим: \( y_1=6, \; y_2=-8 \). Таким образом, задача свелась к решению совокупности уравнений:
\( \left[\begin \sqrt +\sqrt =6 \\ \sqrt +\sqrt = -8 \end\right. \)
Из первого уравнения совокупности находим \( x= \left( \frac<41> <12>\right)^2 \), второе уравнение совокупности решений явно не имеет.

Проверка. Нетрудно проверить (подстановкой), что \( x= \left( \frac<41> <12>\right)^2 \) — является корнем уравнения \( \sqrt +\sqrt =6 \). Но это уравнение равносильно исходному уравнению, значит, \( x= \left( \frac<41> <12>\right)^2 \) — является корнем и исходного уравнения.
Ответ: \( x= \left( \frac<41> <12>\right)^2 \)

Иногда при решении иррациональных уравнений оказывается удобным ввести две новые переменные.

ПРИМЕР 5.
\( \sqrt[\Large4\normalsize] <1-x>+ \sqrt[\Large4\normalsize] <15+x>=2 \)

Введём новые переменные: \( \left\<\begin u=\sqrt[\Large4\normalsize] <1-x>\\ v=\sqrt[\Large4\normalsize] <15+x>\end\right. \)

Тогда уравнение примет вид \(u+v=2\). Но для нахождения значений двух новых переменных одного уравнения недостаточно. Возведя в четвёртую степень обе части каждого из уравнений системы, получим:
\( \left\<\begin u^4=1-x \\ v^4= 15+x \end\right. \)

Сложим уравнения последней системы: \(u^4 +v^4 =16\). Таким образом, для нахождения u, v мы имеем следующую симметрическую систему уравнений:
\( \left\<\begin u+v=2 \\ u^4 +v^4 =16 \end\right. \)
Решив её, находим: \( \left\<\begin u_1=0 \\ v_1 =2; \end\right. \) \( \left\<\begin u_2=2 \\ v_2 =0 \end\right. \)

Таким образом, исходное уравнение свелось к следующей совокупности систем уравнений: \( \left\<\begin \sqrt[\Large4\normalsize] <1-x>=0 \\ \sqrt[\Large4\normalsize] <15+x>=2; \end\right. \) \( \left\<\begin \sqrt[\Large4\normalsize] <1-x>=2 \\ \sqrt[\Large4\normalsize] <15+x>=0 \end\right. \)

Решив эту совокупность, находим: \(x_1=1, \; x_2=-15 \)

Проверка. Проще всего проверить найденные корни непосредственной подстановкой в заданное уравнение. Проделав это, убеждаемся, что оба значения являются корнями исходного уравнения.
Ответ: 1; -15.

ПРИМЕР 6.
\( \sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>= \sqrt[\Large3\normalsize] <2x-1>\)

Возведём обе части уравнения в куб:
\( 2x+1 + 3\sqrt[\Large3\normalsize] <(2x+1)^2>\cdot \sqrt[\Large3\normalsize] <6x+1>+ 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <(6x+1)^2>+6x+1 = 2x-1 \Rightarrow \) \( 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <6x+1>\cdot (3\sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>) = -6x-3 \)

Воспользовавшись исходным уравнением, заменим сумму \( \sqrt[\Large3\normalsize] <2x+1>+ \sqrt[\Large3\normalsize] <6x+1>\) на выражение \( \sqrt[\Large3\normalsize] <2x-1>\):
\( 3\sqrt[\Large3\normalsize] <2x+1>\cdot \sqrt[\Large3\normalsize] <6x+1>\cdot \sqrt[\Large3\normalsize] <2x-1>= -6x-3 \Rightarrow \)
\( 3\sqrt[\Large3\normalsize] < (2x+1)(6x+1)(2x-1) >= -2x-1 \)
Возведём обе части в куб:
\( (2x+1)(6x+1)(2x-1) = -(2x+1)^3 \Rightarrow \)
\( (2x+1)((6x+1)(2x-1) + (2x+1)^2) =0 \Rightarrow \)
\( 16x^2(2x+1) =0 \Rightarrow \)
\( x_1= -0<,>5; \; x_2=0 \)

Проверка. Подстановкой найденных значений x в исходное уравнение убеждаемся, что его корнем является только x = -0,5.
Ответ: -0,5.

2. Иррациональные неравенства

Рассмотрим иррациональное неравенство вида \( \sqrt 0 \). Осталось лишь заметить, что при одновременном выполнении указанных выше условий обе части заданного иррационального неравенства неотрицательны, а потому их возведение в квадрат представляет собой равносильное преобразование неравенства.

Таким образом, иррациональное неравенство \( \sqrt 0 \\ f(x) 0 \\ x^2-x-12 0 \\ x > -12 \end\right. \)

Получаем: \( x \geqslant 4\)


Ответ: \( x \geqslant 4\)

Рассмотрим теперь неравенство вида \( \sqrt > g(x) \).

Ясно, во-первых, что его решения должны удовлетворять условию \( f(x) \geqslant 0 \).
Во-вторых, замечаем, что при \( g(x) g(x) \) не вызывает сомнений.
В-третьих, замечаем, что если \( g(x) \geqslant 0 \), то можно возвести в квадрат обе части заданного иррационального неравенства.

Таким образом, иррациональное неравенство \( \sqrt > g(x) \) равносильно совокупности систем неравенств:
\( \left\<\begin f(x) \geqslant 0 \\ g(x) (g(x))^2 \end\right. \)

Во второй системе первое неравенство является следствием третьего, его можно не писать.

Данное неравенство равносильно совокупности систем неравенств:
\( \left\<\begin x^2-x-12 \geqslant 0 \\ x 0 \)

Преобразуем неравенство к виду \( x^2+3x-10 +3\sqrt >0 \) и введём новую переменную \( y= \sqrt \). Тогда последнее неравенство примет вид \( y^2+3y-10 >0 \), откуда находим, что либо \(y 2\).

Таким образом, задача сводится к решению совокупности двух неравенств:
\( \left[\begin \sqrt 2 \end\right. \)

Первое неравенство не имеет решений, а из второго находим:
\( x^2+3x >4 \Rightarrow \)
\( (x+4)(x-1) >0 \Rightarrow \)
\( x 1 \)
Ответ: \( x 1 \).


источники:

http://nauchniestati.ru/kalkulatory/reshit-uravnenie-s-drobjami-onlajn/

http://www.math-solution.ru/math-task/irrational-equality-inequality