Решить уравнение матрицы 3 на 3

Онлайн калькулятор. Решение систем линейных уравнений. Матричный метод. Метод обратной матрицы.

Используя этот онлайн калькулятор для решения систем линейных уравнений (СЛУ) матричным методом (методом обратной матрицы), вы сможете очень просто и быстро найти решение системы.

Воспользовавшись онлайн калькулятором для решения систем линейных уравнений матричным методом (методом обратной матрицы), вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на решения систем линейных уравнений, а также закрепить пройденный материал.

Решить систему линейных уравнений матричным методом

Изменить названия переменных в системе

Заполните систему линейных уравнений:

Ввод данных в калькулятор для решения систем линейных уравнений матричным методом

  • В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
  • Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа.
  • Если в уравнение отсутствует какая-то переменная, то в соответствующем поле ввода калькулятора введите ноль.
  • Если в уравнение перед переменной отсутствуют числа, то в соответствующем поле ввода калькулятора введите единицу.

Например, линейное уравнение x 1 — 7 x 2 — x 4 = 2

будет вводится в калькулятор следующим образом:

Дополнительные возможности калькулятора для решения систем линейных уравнений матричным методом

  • Между полями для ввода можно перемещаться нажимая клавиши «влево», «вправо», «вверх» и «вниз» на клавиатуре.
  • Вместо x 1, x 2, . вы можете ввести свои названия переменных.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Решение матричных уравнений: теория и примеры

Решение матричных уравнений: как это делается

Матричные уравнения имеют прямую аналогию с простыми алгебраическими уравнениями, в которых присутствует операция умножения. Например,

где x — неизвестное.

А, поскольку мы уже умеем находить произведение матриц, то можем приступать к рассмотрению аналогичных уравнений с матрицами, в которых буквы — это матрицы.

Итак, матричным уравнением называется уравнение вида

где A и B — известные матрицы, X — неизвестная матрица, которую требуется найти.

Как решить матричное уравнение в первом случае? Для того, чтобы решить матричное уравнение вида AX = B , обе его части следует умножить на обратную к A матрицу слева:

.

По определению обратной матрицы, произведение обратной матрицы на данную исходную матрицу равно единичной матрице: , поэтому

.

Так как E — единичная матрица, то EX = X . В результате получим, что неизвестная матрица X равна произведению матрицы, обратной к матрице A , слева, на матрицу B :

.

Как решить матричное уравнение во втором случае? Если дано уравнение

то есть такое, в котором в произведении неизвестной матрицы X и известной матрицы A матрица A находится справа, то нужно действовать аналогично, но меняя направление умножения на матрицу, обратную матрице A , и умножать матрицу B на неё справа:

,

,

.

Как видим, очень важно, с какой стороны умножать на обратную матрицу, так как . Обратная к A матрица умножается на матрицу B с той стороны, с которой матрица A умножается на неизвестную матрицу X . То есть с той стороны, где в произведении с неизвестной матрицей находится матрица A .

Как решить матричное уравнение в третьем случае? Встречаются случаи, когда в левой части уравнения неизвестная матрица X находится в середине произведения трёх матриц. Тогда известную матрицу из правой части уравнения следует умножить слева на матрицу, обратную той, которая в упомянутом выше произведении трёх матриц была слева, и справа на матрицу, обратную той матрице, которая располагалась справа. Таким образом, решением матричного уравнения

.

Решение матричных уравнений: примеры

Пример 1. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид AX = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится слева. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A слева. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

.

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Теперь у нас есть всё, чтобы найти матрицу, обратную матрице A :

.

Наконец, находим неизвестную матрицу:

Пример 2. Решить матричное уравнение

.

Пример 3. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид XA = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится справа. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A справа. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

.

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Находим матрицу, обратную матрице A :

.

Находим неизвестную матрицу:

До сих пор мы решали уравнения с матрицами второго порядка, а теперь настала очередь матриц третьего порядка.

Пример 4. Решить матричное уравнение

.

Решение. Это уравнение первого вида: AX = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится слева. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A слева. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Находим матрицу, обратную матрице A , и делаем это легко, так как определитель матрицы A равен единице:

.

Находим неизвестную матрицу:

Пример 5. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид XA = B , то есть в произведении матрицы A и неизвестной матрицы X матрица A находится справа. Поэтому решение следует искать в виде , то есть неизвестная матрица равна произведению матрицы B на матрицу, обратную матрице A справа. Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Находим матрицу, обратную матрице A :

.

Находим неизвестную матрицу:

Пример 6. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид AXB = C , то есть неизвестная матрица X находится в середине произведения трёх матриц. Поэтому решение следует искать в виде . Найдём матрицу, обратную матрице A .

Сначала найдём определитель матрицы A :

.

Найдём алгебраические дополнения матрицы A :

.

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей A :

.

Находим матрицу, обратную матрице A :

.

Найдём матрицу, обратную матрице B .

Сначала найдём определитель матрицы B :

.

Найдём алгебраические дополнения матрицы B :

Составим матрицу алгебраических дополнений матрицы B :

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей B :

.

Находим матрицу, обратную матрице B :

.

Определитель матрицы 3 на 3

Вы будете перенаправлены на Автор24

Детерминант матрицы (не путайте с дискриминантом для квадратных уравнений) — это определённая матричная характеристика. Иногда вместо термина «детерминант» также используется понятие «определитель».

Детерминант можно посчитать только для квадратных матриц, поэтому при постановке вопроса о нахождении детерминанта для матрицы с размерностью 3 имеют в виду именно квадратную матрицу.

Ниже мы рассмотрим различные способы нахождения определителя 3х3.

Разложение определителя матрицы по строчке

Этот метод сложнее на словах, чем на деле.

Суть его в том, что определитель записывается как сумма произведений элементов первой или любой другой строчки и соответствующих им определителей размером 2 на 2.

Определитель для каждого произведения состоит из элементов, записанных без элементов той строчки и столбца, в которых стоит единичный элемент-множитель.

Также можно осуществлять разложение не только по первой строчке, но и по любой другой или даже столбцу.

Чтобы определить знак, который записывается перед очередным произведением, необходимо помнить, что знаки при элементах чередуются, у первого элемента первой строки — плюс.

То есть произведение при первом элементе первой строчки будет записываться положительным.

Вычислите определитель для $M$ разложением по любой строчке:

$M = \begin -1 & 2 & 5 \\ 7 & -4 & 3 \\ -5 & 0 & 10 \\ \end$

Решение:

Рисунок 1. Пример матрицы 3х3. Автор24 — интернет-биржа студенческих работ

В последней строчке присутствует нуль, поэтому удобно будет сделать разложение именно по ней:

$Δ= (-5) \cdot \begin <|cc|>2 & 5 \\ -4 & 3 \\ \end – 0 \cdot \begin <|cc|>— 1 & 5 \\ 7 & 3 \\ \end + 10 \cdot \begin <|cc|>-1 & 2 \\ 7 & -4 \\ \end = ( — 5 \cdot (6 + 20) – 0 + 10 \cdot (4 – 14) = (-5) \cdot 26 – 0 – 100 = -230$.

Готовые работы на аналогичную тему

Способ «по-французски»: правило Саррюса

Самый легко запоминаемый способ.

Первые два столбика матрицы переписываются рядом справа с исходной матрицей, а дальше рассматриваются левые и правые образуемые диагонали.

Тройки произведений чисел с розовых диагоналей записываются с плюсом, а с синих – с минусом.

Рисунок 2. Как посчитать матрицу 3 на 3. Автор24 — интернет-биржа студенческих работ

Посчитайте определитель $М$ этим методом.

Решение:

$Δ = (-1) \cdot (-4) \cdot 10 + 2 \cdot 3 \cdot (-5) + 5 \cdot 7 \cdot 0 – 2 \cdot 7 \cdot 10 — (-1) \cdot 3 \cdot 0 – 5 \cdot (-4) \cdot (-5) = 40 – 30 + 0 -140 – 0 – 100 = 230$.

Мнемоническое правило с треугольниками

Несколько более сложный способ для запоминания в отличие от предыдущего.

Суть его в том, что произведения троек значений с главной диагонали и с двух треугольников, одна из сторон для каждого параллельна главной диагонали, записываются с плюсом, а с минусом записываются те произведения, что на побочной диагонали и двух треугольниках с параллельными ей сторонами (смотрите рисунок).

Рисунок 3. Как найти детерминант матрицы 3 на 3. Автор24 — интернет-биржа студенческих работ

Приведение матричной таблицы к треугольной

В этом методе нужно получить матрицу, элементы которой сверху или снизу от главной диагонали равны нулю.

Найти определитель для М с помощью получения треугольной матрицы.

Решение:

Вспомним свойство определителя: из любой строки или столбца можно вынести общий для этой строчки или столбца множитель.

$\begin <|ccc|>-1 & 2 & 5 \\ 7 & -4 & 3 \\ -5 & 0 & 10 \\ \end = \begin <|ccc|>-1 & 2 & 5 \\ 7 & -4 & 3 \\ -1 \cdot 5 & 0 \cdot 5 & 2 \cdot 5 \\ \end= 5 \cdot \begin <|ccc|>-1 & 2 & 5 \\ 7 & -4 & 3 \\ -1 & 0 & 2 \\ \end = 5 \cdot \begin <|ccc|>-1 & 1 \cdot 2 & 5 \\ 7 & -2 \cdot 2 & 3 \\ -1 & 0 \cdot 2 & 2 \\ \end= 10 \cdot \begin <|ccc|>-1 & 1 & 5 \\ 7 & -2 & 3 \\ -1 & 0 & 2 \\ \end$.

Теперь преобразуем полученную таблицу, для этого начинаем приводить к нулям элементы крайнего левого столбца. Строчки для удобства будем записывать как (n), где n — это номер строчки.

1) (2) $\cdot \frac17$ + (3), результат запишем в третьей строчке:

2) (1) $ \cdot 7$ + (2), полученное запишем во второй строчке:

3) (2) $\cdot \frac<2><35>$ + (3)$, пишем в 3-ью:, пишем в 3-ью:

Получили матрицу нужного типа. Посчитаем $D$:

$Δ = 10 \cdot (-1) \cdot 5 \cdot \frac<23> <5>= -230$.

Во время использования данного способа внимательно следите за знаками, а также за порядком вычислений.

Теперь вы умеете решать определители матриц наиболее распространёнными способами.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 07 05 2021


источники:

http://function-x.ru/matrix_equations.html

http://spravochnick.ru/matematika/opredelitel_matricy_3_na_3/