Решить уравнение одним из методов касательных

Метод Ньютона

Инструкция . Введите выражение F(x) , нажмите Далее . Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .

  • Решение онлайн
  • Видеоинструкция
  • Оформление Word

Правила ввода функции, заданной в явном виде

  1. Примеры правильного написания F(x) :
    1. 10•x•e 2x = 10*x*exp(2*x)
    2. x•e -x +cos(3x) = x*exp(-x)+cos(3*x)
    3. x 3 -x 2 +3 = x^3-x^2+3
    4. Выражение 0.9*x=sin(x)+1 необходимо преобразовать к виду: sin(x)+1-0.9*x . Аналогично, x^2-7=5-3x к виду x^2+3x-12 .

    Пусть дано уравнение f(x)=0 , где f(x) определено и непрерывно в некотором конечном или бесконечном интервале a ≤ x ≤ b . Всякое значение ξ, обращающее функцию f(x) в нуль, то есть такое, что f(ξ)=0 называется корнем уравнения или нулем функции f(x) . Число ξ называется корнем k -ой кратности, если при x = ξ вместе с функцией f(x) обращаются в нуль ее производные до (k-1) порядка включительно: f(ξ)=f’(ξ)= … =f k-1 (ξ) = 0 . Однократный корень называется простым.
    Приближенное нахождение корней уравнения складывается из двух этапов:

    1. Отделение корней, то есть установление интервалов [αii] , в которых содержится один корень уравнения.
      1. f(a)•f(b) , т.е. значения функции на его концах имеют противоположные знаки.
      2. f’(x) сохраняет постоянный знак, т.е. функция монотонна (эти два условия достаточны, но НЕ необходимы) для единственности корня на искомом отрезке).
      3. f”(x) сохраняет постоянный знак, т.е. функция выпукла вверх, либо – вниз.
    2. Уточнение приближенных корней, то есть доведение их до заданной точности.

    Геометрическая интерпретация метода Ньютона (метод касательных)

    Критерий завершения итерационного процесса имеет вид

    Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной

    Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной

    Метод Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643-1727), под именем которого и обрёл свою известность.

    Метод был описан Исааком Ньютоном в рукописи De analysi per aequationes numero terminorum infinitas ( лат .О б анализе уравнениями бесконечных рядов), адресованной в 1669 году Барроу , и в работе De metodis fluxionum et serierum infinitarum ( лат.Метод флюксий и бесконечные ряды) или Geometria analytica ( лат.Аналитическая геометрия) в собраниях трудов Ньютона, которая была написана в 1671 году. Однако описание метода существенно отличалось от его нынешнего изложения: Ньютон применял свой метод исключительно к полиномам. Он вычислял не последовательные приближения xn , а последовательность полиномов и в результате получал приближённое решение x.

    Впервые метод был опубликован в трактате Алгебра Джона Валлиса в 1685 году, по просьбе которого он был кратко описан самим Ньютоном. В 1690 году Джозеф Рафсон опубликовал упрощённое описание в работе Analysis aequationum universalis (лат. Общий анализ уравнений). Рафсон рассматривал метод Ньютона как чисто алгебраический и ограничил его применение полиномами, однако при этом он описал метод на основе последовательных приближений xn вместо более трудной для понимания последовательности полиномов, использованной Ньютоном.

    Наконец, в 1740 году метод Ньютона был описан Томасом Симпсоном как итеративный метод первого порядка решения нелинейных уравнений с использованием производной в том виде, в котором он излагается здесь. В той же публикации Симпсон обобщил метод на случай системы из двух уравнений и отметил, что метод Ньютона также может быть применён для решения задач оптимизации путём нахождения нуля производной или градиента.

    В соответствии с данным методом задача поиска корня функции сводится к задаче поиска точки пересечения с осью абсцисс касательной, построенной к графику функции .

    Рис.1 . График изменение функции

    Проведенная в любой точке касательная линия к графику функции определяется производной данной функции в рассматриваемой точке, которая в свою очередь определяется тангенсом угла α ( ). Точка пересечения касательной с осью абсцисс определяется исходя из следующего соотношения в прямоугольном треугольнике: тангенс угла в прямоугольном треугольнике определяется отношением противолежащего катета к прилежащему катету треугольнику. Таким образом, на каждом шаге строится касательная к графику функции в точке очередного приближения . Точка пересечения касательной с осью Ox будет являться следующей точкой приближения . В соответствии с рассматриваемым методом расчет приближенного значения корня на i -итерации производится по формуле:

    Наклон прямой подстраивается на каждом шаге наилучшим образом, однако следует обратить внимание на то, что алгоритм не учитывает кривизну графика и следовательно в процессе расчета остается неизвестно в какую сторону может отклониться график.

    Условием окончания итерационного процесса является выполнение следующего условия:

    где ˗ допустимая погрешность определения корня.

    Метод обладает квадратичной сходимостью. Квадратичная скорость сходимость означает, что число верных знаков в приближённом значении удваивается с каждой итерацией.

    Математическое обоснование

    Пусть дана вещественная функция , которая определена и непрерывна на рассматриваемом участке. Необходимо найти вещественный корень рассматриваемой функции.

    Вывод уравнения основано на методе простых итераций, в соответствии с которым уравнение приводят к эквивалентному уравнению при любой функции . Введем понятие сжимающего отображения, которое определяется соотношением .

    Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Данное требование означает, что корень функции должен соответствовать экстремуму функции .

    Производная сжимающего отображения определяется в следующем виде:

    Выразим из данного выражение переменную при условии принятого ранее утверждения о том, что при необходимо обеспечить условие . В результате получим выражение для определения переменной :

    С учетом этого сжимающая функция прием следующий вид:

    Таким образом, алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:

    Алгоритм нахождения корня нелинейного уравнения по методу Ньютона для уравнения с одной переменной

    1. Задать начальную точку приближенного значения корня функции , а также погрешность расчета (малое положительное число ) и начальный шаг итерации ( ).

    2. Выполнить расчет приближенного значения корня функции в соответствии с формулой:

    3. Проверяем приближенное значение корня на предмет заданной точности, в случае:

    — если разность двух последовательных приближений станет меньше заданной точности , то итерационный процесс заканчивается.

    — если разность двух последовательных приближений не достигает необходимой точности , то необходимо продолжить итерационный процесс и перейти к п.2 рассматриваемого алгоритма.

    Пример решения уравнений

    по методу Ньютона для уравнения с одной переменной

    В качестве примера, рассмотрим решение нелинейного уравнения методом Ньютона для уравнения с одной переменной . Корень необходимо найти с точностью в качестве первого приближения .

    Вариант решения нелинейного уравнения в программном комплексе MathCAD представлен на рисунке 3.

    Результаты расчетов, а именно динамика изменения приближенного значения корня, а также погрешности расчета от шага итерации представлены в графической форме (см. рис.2).

    Рис.2 . Результаты расчета по методу Ньютона для уравнения с одной переменной

    Для обеспечения заданной точности при поиске приближенного значения корня уравнения в диапазоне необходимо выполнить 4 итерации. На последнем шаге итерации приближенное значение корня нелинейного уравнения будет определяться значением: .

    Рис.3 . Листинг программы в MathCad

    Модификации метода Ньютона для уравнения с одной переменной

    Существует несколько модификаций метода Ньютона, которые направлены на упрощение вычислительного процесса.

    Упрощенный метод Ньютона

    В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что ведет к увеличению вычислительных затрат. Для уменьшения затрат, связанных с вычислением производной на каждом шаге расчета, можно произвести замену производной f’( xn ) в точке xn в формуле на производную f’(x0) в точке x0. В соответствии с данным методом расчета приближенное значение корня определяется по следующей формуле:

    Таким образом, на каждом шаге расчета строятся прямые , которые параллельны касательной к кривой y=f(x) в точке B0 (см. рис.4). Преимуществом данного метода является то, что производная функции вычисляется один раз.

    Разностный метод Ньютона

    В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что не всегда удобно, а иногда практически невозможно. Данный способ позволяет производную функции заменить разностным отношением (приближенным значением):

    В результате приближенное значение корня функции f(x) будет определяться выражением разностного метода Ньютона:

    Двух шаговый метод Ньютона

    В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что не всегда удобно, а иногда практически невозможно. Данный способ позволяет производную функции заменить разностным отношением (приближенным значением):

    В результате приближенное значение корня функции f(x) будет определяться следующим выражением:

    Метод секущих является двух шаговым, то есть новое приближение определяется двумя предыдущими итерациями и . В методе необходимо задавать два начальных приближения и . Скорость сходимости метода будет линейной.

    Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

    Метод касательных: описание

    Мучаясь в школе над решением уравнений на уроках математики, многие ученики часто уверены, что тратят время абсолютно впустую, а между тем такой навык пригодится в жизни не только тем, кто решит пойти по стопам Декарта, Эйлера или Лобачевского.

    На практике, например в медицине или экономике, сплошь и рядом встречаются ситуации, когда специалисту требуется выяснить, когда концентрация активного вещества того или иного препарата достигнет требуемого уровня в крови пациента или нужно высчитать время, необходимое конкретному бизнесу для того, чтобы он стал рентабельным.

    Чаще всего речь идет о решении нелинейных уравнений различного типа. Сделать это максимально быстро, особенно с использованием ЭВМ, позволяют численные методы. Они хорошо изучены и давно доказали свою эффективность. К их числу относится и метод касательных Ньютона, которым посвящена эта статья.

    Постановка задачи

    В данном случае имеется функция g, которая задана на отрезке (a, b) и принимает на нем определенные значения, т. е. каждому x, принадлежащему (a, b) возможно сопоставить конкретное число g(x).

    Требуется установить все корни уравнения из промежутка между точками a и b (включая концы), для которых функция обнуляется. Очевидно, что это будут точки пересечения y = g(x) с ОХ.

    В некоторых случаях удобнее заменить g(x)=0 на аналогичное, вида g1(x) = g2(x). В таком случае в качестве корней выступают абсциссы (значение x) точек пересечения графиков g1(x) и g2(x).

    Решение нелинейного уравнения важно и для задач оптимизации, для которых условие локального экстремума — обращение в 0 производной функции. Иными словами, такая задача может свестись к поиску корней уравнения p(x) = 0, где p(x) тождественна g'(x).

    Методы решения

    Для некоторых видов нелинейных уравнений, например квадратных или простых тригонометрических, найти корни можно достаточно простыми способами. В частности, каждый школьник знает формулы, используя которые можно без проблем находить значения аргумента точек, где обнуляется квадратный трехчлен.

    Способы извлечения корней нелинейных уравнений принято делить на аналитические (прямые) и итерационные. В первом случае искомое решение имеет вид формулы, используя которую за некоторое число арифметических операций можно найти значение искомых корней. Подобные методы разработаны для показательных, тригонометрических, логарифмических и простейших алгебраических уравнений. Для остальных же приходится использовать специальные численные методы. Их легко реализовать с помощью ЭВМ, которые позволяют найти корни с требуемой точностью.

    К их числу относится и так называемый численный метод касательных. Последний был предложен великим ученым Исааком Ньютоном в конце XVII века. В последующие столетия метод неоднократно совершенствовался.

    Локализация

    Численные способы решения сложных уравнений, не имеющих аналитических решений, принято осуществлять в 2 этапа. Сначала требуется их локализировать. Эта операция заключается в нахождение таких отрезков на ОХ, на которых существует один корень решаемого уравнения.

    Рассмотрим отрезок [a,b]. Если g(x) на нем не имеет разрывов и принимает в концевых точках значения разных знаков, то между a и b или в них самих расположен по крайней мере 1 корень уравнения g(x) = 0. Чтобы он был единственным, требуется, чтобы g(x) на [a,b] была монотонной. Как известно, таким свойством она будет обладать при условии знакопостоянства g’(x).

    Говоря иначе, если на [a,b] g(x) не имеет разрывов и монотонно растет или убывает, а ее значения в концевых точках имеют не одинаковые знаки, то на [a, b] существует 1 и только 1 корень g(x).

    При этом следует знать, что этот критерий не будет действовать для корней уравнений, являющихся кратными.

    Решение уравнения делением пополам

    Прежде чем рассматривать более сложные численные методы (метод касательных и его разновидности) стоит познакомиться с наиболее простым способом выявления корней. Он называется дихотомией и относится к интуитивным методам. Алгоритм нахождения корней основан на теореме о том, что если для g(x), непрерывной на [x0, x1] выполняется условие разнознаковости, то на рассматриваемом отрезке есть хотя бы 1 корень g(x) = 0.

    Для его обнаружения нужно поделить отрезок [x0, x1] пополам и обозначить среднюю точку как x2. Тогда возможны два варианта: g(x0) * g(x2) либо g(x2) * g(x1) равны или меньше 0. Выбираем тот, для которого верно одно из этих неравенств. Повторяем процедуру, описанную выше, пока длина [x0, x1] не станет меньше некой, заранее выбранной величины, определяющей точность определения корня уравнения на [x0, x1].

    К достоинствам метода относится его надежность и простота, а недостаток — необходимость изначально выявить точки, в которых g(x) принимает разные знаки, поэтому его нельзя применять для корней, обладающих четной кратностью. Кроме того, он не обобщается на случай системы уравнений или если речь идет о комплексных корнях.

    Пример 1

    Пусть мы хотим решить уравнение g(x) = 2x 5 + x — 1 = 0. Чтобы долго не искать подходящий отрезок, строим график, используя, например, известную программу «Эксель». Мы видим, что в качестве отрезка для локализации корня лучше брать значения из промежутка [0,1]. Мы можем быть уверены, что хотя бы один корень искомого уравнения на нем есть.

    g'(x) = 10x 4 + 1, т. е. это монотонно возрастающая функция, поэтому на выбранном отрезке есть только 1 корень.

    Подставляем концевые точки в уравнение. Имеем 0 и 1 соответственно. На первом шаге за решение берем точку 0,5. Тогда g(0,5) = -0,4375. Значит ,следующий отрезок для деления пополам будет [0,5, 1]. Его серединная точка — 0,75. В ней значение функции равно 0,226. Берем для рассмотрения отрезок [0,5, 0,75] и его середину, которая находится в точке 0,625. Вычисляем значение g(x) в 0,625. Оно равно -0,11, т. е. отрицательное. Опираясь на этот результат, выбираем отрезок [0,625, 0,75]. Получаем x = 0,6875. Тогда g(x) = -0,00532. Если точность решения 0,01, то можем считать, что искомый результат равен 0,6875.

    Теоретическая база

    Этот способ нахождения корней методом касательных Ньютона пользуется популярностью из-за его очень быстрой сходимости.

    Он основан на том доказанном факте, что если xn — приближение к корню f(x)=0, таком, что f’ C 1 , то следующая апроксимация будет в точке, где обнуляется уравнение касательной к f(x), т. е.

    Подставляем x = xn+1 и обнуляем y.

    Тогда алгоритм метода касательных выглядит так:

    Пример 2

    Попробуем использовать классический метод касательных Ньютона и найти решение какого-либо нелинейного уравнения, которое сложно или невозможно отыскать аналитически.

    Пусть требуется выявить корни для x 3 + 4x — 3 = 0 с некоторой точностью, например 0,001. Как известно, график любой функции в виде многочлена нечетной степени должен хотя бы раз пересекать ось ОХ, т. е. сомневаться в существовании корней не приходится.

    Прежде чем решить наш пример методом касательных, строим график f(x) = x 3 + 4x — 3 поточечно. Это очень легко сделать, например, используя табличный процессор «Эксель». Из полученного графика будет видно, что на [0,1] происходит его пересечение с осью ОХ и функция y = x 3 + 4x — 3 монотонно возрастает. Мы можем быть уверены, что на [0,1] уравнения x 3 + 4x — 3 = 0 имеет решение и оно единственное.

    Алгоритм

    Любое решение уравнений методом касательных начинается с вычисления f ‘(x). Имеем:

    Тогда вторая производная будет иметь вид x * 6.

    Используя эти выражения, можем записать формулу для выявления корней уравнения по методу касательных в виде:

    Далее требуется выбрать начальное приближение, т. е. заняться определением, какую точку считать стартовой (об. x0) для итерационного процесса. Рассматриваем концы отрезка [0,1]. Нам подойдет тот, для которого верно условие разнознаковости функции и ее 2-ой производной в x0. Как видим, при подстановке x0 = 0 оно нарушено, а вот x0 = 1 вполне подходит.

    то если нас интересует решение методом касательных с точностью e, то значение xn можно считать удовлетворяющим требованиям задачи, при условии выполнения неравенства|f(xn) / f’(xn)| 3 + 4x0 — 3) / (3x0 2 + 4) = 1- 0,2857 = 0,71429;

  2. так как условие не выполняется, идем далее;
  3. получаем новое значение для x2, которое равно 0,674;
  4. замечаем, что отношение значения функции к ее производной в x2 меньше 0,0063, прекращаем процесс.
  5. Метод касательных в Excel

    Решить предыдущий пример можно намного легче и быстрее, если не производить расчеты вручную (на калькуляторе), а использовать возможности табличного процессора от компании «Майкрософт».

    Для этого в «Эксель» нужно создать новую страницу и заполнить ее ячейки следующими формулами:

    • в C7 записываем «= СТЕПЕНЬ (B7;3) + 4 * B7 — 3»;
    • в D7 вписываем «= 4 + 3 * СТЕПЕНЬ (B7;2)»;
    • в E7 записываем «= (СТЕПЕНЬ (B7;3)- 3 + 4 * B7) / (3* СТЕПЕНЬ (B7;2) + 4)»;
    • в D7 вписываем выражение «=В7 – Е7»;
    • в B8 вписываем формулу-условие «= ЕСЛИ(Е7 4 – 4 – 2 * х методом касательных в Паскале.

    Используем вспомогательную функцию, которая поможет осуществить приближенное вычисление f'(x) = (f(x + delta) — f(x)) / delta. В качестве условия для завершения итерационного процесса выберем выполнение неравенства|x0-x1| 27 августа, 2017


    источники:

    http://simenergy.ru/math-analysis/solution-methods/45-method-newton-s

    http://fb.ru/article/337323/metod-kasatelnyih-opisanie