Решить уравнение онлайн в целых

Линейные диофантовы уравнения с двумя переменными

Калькулятор решает линейные диофантовы уравнения с двумя переменными.

Сначала калькулятор, теория под ним.

Линейные диофантовы уравнения с двумя переменными

Диофантово уравнение с двумя неизвестными имеет вид:

где a, b, c — заданные целые числа, x и y — неизвестные целые числа.

Для нахождения решений уравнения используется Расширенный алгоритм Евклида (исключая вырожденный случай, когда a = b = 0 и уравнение имеет либо бесконечно много решений, либо же не имеет решений вовсе).
Если числа a и b неотрицательны, тогда с помощью расширенного алгоритма Евклида мы можем найти их наибольший общий делитель g, а также такие коэффициенты и , что:
.

Утверждается, что если число c делится на g, то диофантово уравнение имеет решение; в противном случае диофантово уравнение решений не имеет. Это следует из очевидного факта, что линейная комбинация двух чисел по-прежнему должна делиться на их общий делитель.

То есть если c делится на g, тогда выполняется соотношение:

т. е. одним из решений диофантова уравнения являются числа:

Если одно из чисел a и b или они оба отрицательны, то можно взять их по модулю и применить к ним алгоритм Евклида, как было описано выше, а затем изменить знак найденных коэффициентов и в соответствии с настоящим знаком чисел a и b соответственно.

Если мы знаем одно из решений, мы можем получить выражение для всех остальных решений, которых бесконечное множество.

Итак, пусть g = НОД (a,b), выполняется условие:
.

Тогда, прибавив к число и одновременно отняв от , мы не нарушим равенства:

Этот процесс можно повторять сколько угодно, т. е. все числа вида:

,
где k принадлежит множеству целых чисел, являются множеством всех решений диофантова уравнения.

Линейные диофантовы уравнения онлайн

Линейным диофантовым уравнением с двумя неизвестными называется уравнение вида:

В основе нашего калькулятора лежит расширенный алгоритм Евклида, записанный в виде цепной дроби. Однако, в некоторых случаях (например, когда коэффициент ) применяются более простые подходы. Также калькулятор не рассматривает случаи, когда хотя бы один из коэффициентов или равен , так как они приводят к обычному линейному уравнению.

Если коэффициент не делится нацело на , то линейное диофантово уравнение с двумя неизвестными не имеет решений. Напротив, если делится нацело на , то указанное уравнение имеет бесконечное множество целых решений.

Для решения линейного диофантового уравнения с двумя неизвестными сначала необходимо найти частное решение и , а затем записать общее решение, используя формулы:

Рассмотрим пример решения линейного диофантового уравнения с двумя неизвестными:

Поскольку делится нацело на , то данное уравнение имеет решения в целых числах.

Далее, найдём какое-нибудь конкретное (частное) решение и исходного уравнения. Для этого, сначала необходимо найти частное решение и вспомогательного уравнения с коэффициентом :

а затем умножить найденное частное решение и вспомогательного уравнения на и получить частное решение и исходного уравнения:

Чтобы найти частное решение вспомогательного уравнения используем цепные дроби. Для этого составим дробь , числителем которой будет коэффициент , а знаменателем коэффициент .

Преобразуем данную дробь в цепную дробь:

В полученной цепной дроби отбросим последнюю дробь :

Полученная дробь является отношением частных решений и выбранных с правильным знаком:

Подставляя четыре значения во вспомогательное уравнение, определяем его частное решение:

Теперь, чтобы найти частное решение и исходного уравнения, умножим найденное частное решение и вспомогательного уравнения на :

Используя формулы для общего решения, запишем конечный ответ:

Наш онлайн калькулятор может решить любое линейное диофантово уравнение с двумя неизвестными с описанием подробного хода решения на русском языке. Чтобы начать работу, необходимо ввести уравнение и задать искомые переменные.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение показательных уравнений.

Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
Решить уравнение

Немного теории.

Показательная функция, её свойства и график

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
1) a n a m = a n+m

4) (ab) n = a n b n

7) a n > 1, если a > 1, n > 0

8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, \( a \neq 1\)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, \( a \neq 1\), не имеет корней, если \( b \leqslant 0\), и имеет корень при любом b > 0.

3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, \( a \neq 1\), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \( a \neq 1\) равны тогда и только тогда, когда равны их показатели.

Решить уравнение 2 3x • 3 x = 576
Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
Ответ х = 2

Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
откуда 3 х — 2 = 1, x — 2 = 0, x = 2
Ответ х = 2

Решить уравнение 3 х = 7 х
Так как \( 7^x \neq 0 \) , то уравнение можно записать в виде \( \frac<3^x> <7^x>= 1 \), откуда \( \left( \frac<3> <7>\right) ^x = 1 \), х = 0
Ответ х = 0

Решить уравнение 9 х — 4 • 3 х — 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2

Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
Запишем уравнение в виде
3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
2 х — 2 • 23 = 5 х — 2 • 23
\( \left( \frac<2> <5>\right) ^ = 1 \)
x — 2 = 0
Ответ х = 2

Решить уравнение 3 |х — 1| = 3 |х + 3|
Так как 3 > 0, \( 3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1


источники:

http://mathforyou.net/online/equation/diophantine/linear/

http://www.math-solution.ru/math-task/exponential-equality