Решить уравнение с помощью алгебраических дополнений

Алгебраические дополнения и миноры. Виды миноров и алгебраических дополнений.

В данной теме рассмотрим понятия алгебраического дополнения и минора. Изложение материала опирается на термины, пояснённые в теме «Матрицы. Виды матриц. Основные термины». Также нам понадобятся некоторые формулы для вычисления определителей. Так как в данной теме немало терминов, относящихся к минорам и алгебраическим дополнениям, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Минор $M_$ элемента $a_$

Пусть задана квадратная матрица $A_$ (т.е. квадратная матрица n-го порядка).

Для примера рассмотрим квадратную матрицу четвёртого порядка: $A=\left( \begin 1 & 0 & -3 & 9\\ 2 & -7 & 11 & 5 \\ -9 & 4 & 25 & 84\\ 3 & 12 & -5 & 58 \end \right)$. Найдём минор элемента $a_<32>$, т.е. найдём $M_<32>$. Сперва запишем минор $M_<32>$, а потом вычислим его значение. Для того, чтобы составить $M_<32>$, вычеркнем из матрицы $A$ третью строку и второй столбец (именно на пересечении третьей строки и второго столбца расположен элемент $a_<32>$). Мы получим новую матрицу, определитель которой и есть искомый минор $M_<32>$:

Этот минор несложно вычислить, используя формулу №2 из темы вычисления определителей второго и третьего порядков:

$$ M_<32>=\left| \begin 1 & -3 & 9\\ 2 & 11 & 5 \\ 3 & -5 & 58 \end \right|= 1\cdot 11\cdot 58+(-3)\cdot 5\cdot 3+2\cdot (-5)\cdot 9-9\cdot 11\cdot 3-(-3)\cdot 2\cdot 58-5\cdot (-5)\cdot 1=579. $$

Итак, минор элемента $a_<32>$ равен 579, т.е. $M_<32>=579$.

Часто вместо словосочетания «минор элемента матрицы» в литературе встречается «минор элемента определителя». Суть остается неизменной: чтобы получить минор элемента $a_$ нужно вычеркнуть из исходного определителя i-ю строку и j-й столбец. Оставшиеся элементы записывают в новый определитель, который и является минором элемента $a_$. Например, найдём минор элемента $a_<12>$ определителя $\left| \begin -1 & 3 & 2\\ 9 & 0 & -5 \\ 4 & -3 & 7 \end \right|$. Чтобы записать требуемый минор $M_<12>$ нам понадобится вычеркнуть из заданного определителя первую строку и второй столбец:

Чтобы найти значение данного минора используем формулу №1 из темы вычисления определителей второго и третьего порядков:

$$ M_<12>=\left| \begin 9 & -5\\ 4 & 7 \end \right|=9\cdot 7-(-5)\cdot 4=83. $$

Итак, минор элемента $a_<12>$ равен 83, т.е. $M_<12>=83$.

Алгебраическое дополнение $A_$ элемента $a_$

Пусть задана квадратная матрица $A_$ (т.е. квадратная матрица n-го порядка).

где $M_$ – минор элемента $a_$.

Найдем алгебраическое дополнение элемента $a_<32>$ матрицы $A=\left( \begin 1 & 0 & -3 & 9\\ 2 & -7 & 11 & 5 \\ -9 & 4 & 25 & 84\\ 3 & 12 & -5 & 58 \end \right)$, т.е. найдём $A_<32>$. Ранее мы уже находили минор $M_<32>=579$, поэтому используем полученный результат:

Обычно при нахождении алгебраических дополнений не вычисляют отдельно минор, а уж потом само дополнение. Запись минора опускают. Например, найдем $A_<12>$, если $A=\left( \begin -5 & 10 & 2\\ 6 & 9 & -4 \\ 4 & -3 & 1 \end \right)$. Согласно формуле $A_<12>=(-1)^<1+2>\cdot M_<12>=-M_<12>$. Однако чтобы получить $M_<12>$ достаточно вычеркнуть первую строку и второй столбец матрицы $A$, так зачем же вводить лишнее обозначение для минора? Сразу запишем выражение для алгебраического дополнения $A_<12>$:

Минор k-го порядка матрицы $A_$

Если в предыдущих двух пунктах мы говорили лишь о квадратных матрицах, то здесь поведём речь также и о прямоугольных матрицах, у которых количество строк вовсе не обязательно равняется количеству столбцов. Итак, пусть задана матрица $A_$, т.е. матрица, содержащая m строк и n столбцов.

Например, рассмотрим такую матрицу:

$$A=\left( \begin -1 & 0 & -3 & 9\\ 2 & 7 & 14 & 6 \\ 15 & -27 & 18 & 31\\ 0 & 1 & 19 & 8\\ 0 & -12 & 20 & 14\\ 5 & 3 & -21 & 9\\ 23 & -10 & -5 & 58 \end \right) $$

Запишем для неё какой-либо минор третьего порядка. Чтобы записать минор третьего порядка нам потребуется выбрать какие-либо три строки и три столбца данной матрицы. Например, возьмём строки №2, №4, №6 и столбцы №1, №2, №4. На пересечении этих строк и столбцов будут располагаться элементы требуемого минора. На рисунке элементы минора показаны синим цветом:

Миноры первого порядка находятся на пересечении одной строки и одного столбца, т.е. миноры первого порядка равны элементам заданной матрицы.

Напомню, что главными диагональными элементами именуют те элементы матрицы, у которых индексы равны: $a_<11>$, $a_<22>$, $a_<33>$ и так далее. Например, для рассмотренной выше матрицы $A$ такими элементами будут $a_<11>=-1$, $a_<22>=7$, $a_<33>=18$, $a_<44>=8$. На рисунке они выделены зелёным цветом:

$$\left( \begin \boldgreen <-1>& 0 & -3 & 9\\ 2 & \boldgreen <7>& 14 & 6 \\ 15 & -27 & \boldgreen <18>& 31\\ 0 & 1 & 19 & \boldgreen<8>\\ 0 & -12 & 20 & 14\\ 5 & 3 & -21 & 9\\ 23 & -10 & -5 & 58 \end \right) $$

Например, если в матрице $A$ мы вычеркнем строки и столбцы с номерами 1 и 3, то на их пересечении будут расположены элементы минора второго порядка, на главной диагонали которого будут находиться только диагональные элементы матрицы $A$ (элементы $a_<11>=-1$ и $a_<33>=18$ матрицы $A$). Следовательно, мы получим главный минор второго порядка:

$$ M=\left|\begin \boldgreen <-1>& -3 \\ 15 & \boldgreen <18>\end \right| $$

Естественно, что мы могли взять иные строки и столбцы, – например, с номерами 2 и 4, получив при этом иной главный минор второго порядка.

Для примера рассмотрим такую матрицу:

$$A=\left( \begin -1 & 0 & 3 & 0 & 0 \\ 2 & 0 & 4 & 1 & 0\\ 1 & 0 & -2 & -1 & 0\\ 0 & 0 & 0 & 0 & 0 \end \right) $$

Запишем минор этой матрицы, элементы которого расположены на пересечении строк №1, №2, №3 и столбцов с №1, №3, №4. Мы получим минор третьего порядка (его элементы выделены в матрице $A$ фиолетовым цветом):

Найдём значение этого минора, используя формулу №2 из темы вычисления определителей второго и третьего порядков:

$$ M=\left| \begin -1 & 3 & 0\\ 2 & 4 & 1 \\ 1 & -2 & -1 \end \right|=4+3+6-2=11. $$

Итак, $M=11\neq 0$. Теперь попробуем составить любой минор, порядок которого выше трёх. Чтобы составить минор четвёртого порядка, нам придётся использовать четвёртую строку, однако все элементы этой строки равны нулю. Следовательно, в любом миноре четвёртого порядка будет нулевая строка, а это означает, что все миноры четвёртого порядка равны нулю. Миноры пятого и более высоких порядков составить мы не можем, так как матрица $A$ имеет всего 4 строки.

Мы нашли минор третьего порядка, не равный нулю. При этом все миноры высших порядков равны нулю, следовательно, рассмотренный нами минор – базисный. Строки матрицы $A$, на которых расположены элементы этого минора (первая, вторая и третья), – базисные строки, а первый, третий и четвёртый столбцы матрицы $A$ – базисные столбцы.

Данный пример, конечно, тривиальный, так как его цель – наглядно показать суть базисного минора. Вообще, базисных миноров может быть несколько, и обычно процесс поиска такого минора куда сложнее и объёмнее.

Введём ещё одно понятие – окаймляющий минор.

Для примера обратимся к такой матрице:

$$A=\left( \begin -1 & 2 & 0 & -2 & -14\\ 3 & -17 & -3 & 19 & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 19 & -20 & -98\\ 6 & 12 & 20 & 21 & 54\\ -7 & 10 & 14 & -36 & 79 \end \right) $$

Запишем минор второго порядка, элементы которого расположены на пересечении строк №2 и №5, а также столбцов №2 и №4. Эти элементы выделены в матрице красным цветом:

Добавим к набору строк, на которых лежат элементы минора $M$, ещё строку №1, а к набору столбцов – столбец №5. Получим новый минор $M’$ (уже третьего порядка), элементы которого расположены на пересечении строк №1, №2, №5 и столбцов №2, №4, №5. Элементы минора $M$ на рисунке выделены красным цветом, а элементы, которые мы добавляем к минору $M$ – синим:

Минор $M’$ является окаймляющим минором для минора $M$. Аналогично, добавляя к набору строк, на которых лежат элементы минора $M$, строку №4, а к набору столбцов – столбец №3, получим минор $M»$ (минор третьего порядка):

Минор $M»$ также является окаймляющим минором для минора $M$.

Минор k-го порядка матрицы $A_$. Дополнительный минор. Алгебраическое дополнение к минору квадратной матрицы.

Вновь вернёмся к квадратным матрицам. Введём понятие дополнительного минора.

Для примера рассмотрим квадратную матрицу пятого порядка:

$$ A=\left( \begin -1 & 2 & 0 & -2 & -14\\ 3 & -17 & -3 & 19 & 29\\ 5 & -6 & 8 & -9 & 41\\ -5 & 11 & 16 & -20 & -98\\ -7 & 10 & 14 & -36 & 79 \end \right) $$

Выберем в ней строки №1 и №3, а также столбцы №2 и №5. На пересечении оных строк и столбцов будут элементы минора $M$ второго порядка. Эти элементы выделены в матрице $A$ зелёным цветом:

Теперь уберём из матрицы $A$ строки №1 и №3 и столбцы №2 и №5, на пересечении которых находятся элементы минора $M$ (элементы убираемых строк и столбцов показаны красным цветом на рисунке ниже). Оставшиеся элементы образуют минор $M’$:

Минор $M’$, порядок которого равен $5-2=3$, является минором, дополнительным к минору $M$.

Словосочетание «алгебраическое дополнение к минору $M$» часто заменяют словосочетанием «алгебраическое дополнение минора $M$».

Для примера рассмотрим матрицу $A$, для которой мы находили минор второго порядка $ M=\left| \begin 2 & -14 \\ -6 & 41 \end \right| $ и дополнительный к нему минор третьего порядка: $M’=\left| \begin 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end \right|$. Обозначим алгебраическое дополнение минора $M$ как $M^*$. Тогда согласно определению:

Параметр $\alpha$ равен сумме номеров строк и столбцов, на которых находится минор $M$. Этот минор расположен на пересечении строк №1, №3 и столбцов №2, №5. Следовательно, $\alpha=1+3+2+5=11$. Итак:

$$ M^*=(-1)^<11>\cdot M’=-\left| \begin 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end \right|. $$

В принципе, используя формулу №2 из темы вычисления определителей второго и третьего порядков, можно довести вычисления до конца, получив значение $M^*$:

$$ M^*=-\left| \begin 3 & -3 & 19\\ -5 & 16 & -20 \\ -7 & 14 & -36 \end \right|=-30. $$

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Алгебраические дополнения

Определение . Алгебраическим дополнением элемента ai j определителя D называется его минор, взятый со знаком (-1) i+j .
Алгебраическое дополнение элемента ai j обозначается через Ai j . Следовательно, Ai j = (-1) i+j Mi j .

  • Ввод данных
  • Видеоинструкция

Пример №1 . Дан определитель . Найти минор и алгебраическое дополнение элемента a2 1 (выделен пунктиром).
Решение. Вычеркивая в определителе первую строку и второй столбец, на пересечении которых находится элемент a2 1 , получим . Тогда A2 1 = (-1) 1+2 M2 1 = -14.
Теорема. Определитель равен сумме произведений элементов какой-нибудь строки или столбца на их алгебраические дополнения, т.е.
D=a i0 1·A i0 1+a i0 2·A i0 2+ . + a i0 n·A i0 n (*)
где i0 – фиксировано.
Выражение (*) называют разложением определителя D по элементам строки с номером i0.
Вычисление определителя n -го порядка сводится к вычислению одного определителя ( n-1 )-го порядка, для чего в какой–либо строке (или столбце) получают ( n -1) нулей, а затем разлагают определитель по этой строке, пользуясь формулой (*).

Пример №2 . Покажем нахождение алгебраических дополнений на примере определения обратной матрицы:

Решение находим с помощью калькулятора. Найдем главный определитель.
∆ = 0.73 ∙(0.72 ∙0.92 -(-0.17 ∙(-0.15 )))-(-0.19 ∙(-0.07 ∙0.92 -(-0.17 ∙(-0.12 ))))+(-0.12 ∙(-0.07 ∙(-0.15 )-0.72 ∙(-0.12 ))) = 0.437197
Транспонированная матрица

Алгебраические дополнения

Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи: А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.

X = x 1 x 2 ⋮ x n — столбец неизвестных,

B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :

A — 1 × A × X = A — 1 × B .

Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .

В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Решаем СЛАУ методом обратной матрицы:

2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X :
  • Находим определитель матрицы А :

d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25

d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :

А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,

А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,

А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,

А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,

А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,

А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,

А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,

А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,

А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :

А * = — 6 7 5 17 1 — 10 — 10 — 5 0

  • Записываем обратную матрицу согласно формуле:

A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,

  • Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:

X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1

Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1


источники:

http://math.semestr.ru/matrix/cofactors.php

http://zaochnik.com/spravochnik/matematika/issledovanie-slau/matrichnyj-metod-reshenija-slau/