Решить уравнение с помощью формул приведения

Формулы приведения. Примеры из ЕГЭ

Как вы, наверное, уже обратили внимание, формулы приведения разработаны для углов, представленных в одном из следующих видов: \(\frac<\pi><2>+a\), \(\frac<\pi><2>-a\), \(π+a\), \(π-a\), \(\frac<3\pi><2>+a\), \(\frac<3\pi><2>-a\), \(2π+a\) и \(2π-a\). Аналогично их можно использовать для углов представленных в градусах: \(90^°+a\), \(90^°-a\), \(180^°+a\), \(180^°-a\), \(270^°+a\), \(270^°-a\), \(180^°+a\), \(180^°-a\).
К счастью, учить наизусть формулы привидения вам не придется, потому что есть легкий и надежный способ вывести нужную за пару секунд.

Как быстро получить любую формулу приведения

Для начала обратите внимание, что все формулы имеют похожий вид:

Здесь нужно пояснить термин «кофункция» — это та же самая функция с добавлением или убиранием приставки «ко-». То есть, для синуса кофункцией будет косинус, а для косинусасинус. С тангенсом и котангенсом – аналогично.

Таким образом, например, синус при применении этих формул никогда не поменяется на тангенс или котангенс , он либо останется синусом, либо превратиться в косинус . А котангенс никогда не станет синусом или косинусом, он либо останется котангенсом, либо станет тангенсом. И так далее.

Едем дальше. Так как исходная функция и ее аргумент нам обычно даны, то весь вывод нужной формулы сводится к двум вопросам:
— как определить знак перед конечной функцией (плюс или минус)?
— как определить меняется ли функция на кофункцию или нет?

Как определить знак перед конечной функцией (плюс или минус)?

Какой знак был у исходной функции в исходной четверти, такой знак и нужно ставить перед конечной функцией.

Например, выводим формулу приведения для \(⁡cos⁡(\frac<3\pi><2>-a) =. \) С исходной функцией понятно – косинус, а исходная четверт ь ?

Для того, чтобы ответить на этот вопрос, представим, что \(a\) – угол от \(0\) до \(\frac<\pi><2>\), т.е. лежит в пределах \(0°…90^°\) (хотя это может быть не так, но для определения знака данная условность необходима). В какой четверти тригонометрической окружности при таком условии будет находиться точка, обозначающая угол \(\frac<3\pi><2>-a\)?
Чтобы ответить на вопрос, надо от точки, обозначающей \(\frac<3\pi><2>\), повернуть в отрицательную сторону на угол \(a\).

В какой четверти мы окажемся? В третьей. А какой же знак имеет косинус в третьей четверти? Минус. Поэтому перед итоговой функцией будет стоят минус: \(cos(\frac<3\pi><2>-a)=-. \)

Менять ли функцию на кофункцию или оставить прежней?

Здесь правило еще проще:

— если «точка привязки» \(\frac<\pi><2>\) (\(90^°\)) или \(\frac<3\pi><2>\) (\(270^°\))– функция меняется на кофункцию;
— если «точка привязки» \(π\) (\(180^°\)) или \(2π\) (\(360^°\)) – функция остается той же.

То есть, при аргументах исходной функции \(\frac<\pi><2>+a\), \(\frac<\pi><2>-a\), \(\frac<3\pi><2>+a\) или \(\frac<\pi><2>-a\), мы должны поменять функцию, а при аргументах \(π+a\), \(π-a\), \(2π+a\) или \(2π-a\) — нет. Для того, чтоб это легче запомнить, вы можете воспользоваться мнемоническим правилом, которое в школе называют «лошадиным правилом»:

Точки, обозначающие \(\frac<\pi><2>\) \((90^°)\) и \(\frac<3\pi><2>\) \((270^°)\), расположены вертикально, и если вы переводите взгляд с одной на другую и назад, вы киваете головой, как бы говоря «да».

Точки же, обозначающие \(π\) (\(180^°\)) и \(2π\) (\(360^°\)), расположены горизонтально, и если вы переводите взгляд между ними, вы мотаете головой, как бы говоря «нет».

Эти «да» и «нет» — и есть ответ на вопрос: «меняется ли функция?».
Таким образом, согласно правилу, в нашем примере выше \(\cos⁡(\frac<3π><2>-a)=. \) косинус будет меняться на синус. В конечном итоге получаем, \(\cos⁡(\frac<3π><2>-a)=-\sin⁡\) \(a\). Это и есть верная формула приведения.

Примеры из ЕГЭ с формулами приведения:

Углы \(<41>^°\) и \(<49>^°\) нестандартные, поэтому «в лоб» без калькулятора вычислить непросто. Однако использовав формулы привидения, мы легко найдем правильный ответ.
Прежде всего, обратите внимание на один важный момент: \(49^°=90^°-41^°\). Поэтому мы можем заменить \(49^°\) на \(90^°-41^°\).

Теперь применим к синусу формулу приведения:

\(90^°-41^°\) – это первая четверть, синус в ней положителен. Значит, знак будет плюс;

\(90^°\)- находится на «вертикали» — функция меняется на кофункцию.

В числителе и знаменателе получились одинаковые косинусы. Сокращаем их.

Формулы приведения с примерами решения

При изучении геометрии вы установили, что

если

Свойство периодичности тригонометрических функций позволяет свести вычисление значений синуса, косинуса, тангенса и котангенса произвольного угла к вычислению значений этих функций при значениях аргумента, принадлежащих промежутку Например,


На практике принято сводить значения тригонометрических функций произвольного угла к вычислению значений этих функций для угла, принадлежащего промежутку .

Это можно делать с помощью формул приведения.

Рассмотрим промежуток Любое число из этого промежутка можно пред ставить в виде

Например,
Поскольку ординаты точек равны, а абсциссы отличаются только знаком, то: (рис. 113).
Тогда для получим, что
А для имеем:

Вместе с тем любое число из промежутка можно также представить в виде где Например,
Так как ордината точки равна абсциссе точки а абсцисса точки отличается от ординаты точки только знаком (рис. 114), то: а

Для получим:


Так как любое число из промежутка можно представить в виде или то, рассуждая аналогично, получим формулы приведения:

Поскольку любое число из промежутка можно представить в виде то получим:

Проанализировав полученные формулы, можно заметить закономерности, позволяющие сформулировать правило, с помощью которого можно применять формулы приведения, не заучивая их:

В правой части формулы приведения ставится тот знак, который имеет в соответствующей четверти исходная функция, если считать, что угол — острый.

Если в формуле приведения аргумент имеет вид:

  • то название функции не меняется;
  • то название функции меняется (синус на косинус, косинус на синус, тангенс на котангенс, котангенс на тангенс).

Например, применим полученное правило для выражения

  1. Если считать, что угол — острый, то — — угол третьей четверти. В третьей четверти косинус (исходная функция) отрицательный, значит, в правой части равенства нужно поставить знак «минус».
  2. Поскольку аргумент имеет вид то название функции «косинус» нужно поменять на «синус». Таким образом, получим:

Пример:

Приведите выражение к тригонометрической функции числа применив формулы приведения:

Решение:

а) 1. Так как — угол четвертой четверти, в которой косинус положительный, то в правой части равенства не нужно ставить знак «минус».

2. Поскольку аргумент имеет вид то название функции «косинус» не меняется. Значит,

б) 1. Так как — угол четвертой четверти, в которой тангенс отрицательный, то в правой части равенства нужно поставить знак «минус».

2.Поскольку аргумент имеет вид название функции «тангенс» нужно поменять на «котангенс». Тогда

в) 1. Так как — угол второй четверти, в которой синус положительный, то в правой части равенства части равенства не нужно ставить знак «минус»

2. Поскольку аргумент имеет вид то название функции «синус» не меняется. Значит,

Пример:

Используйте формулы приведения и найдите значение выражения:

Решение:

Первый способ:

  1. Так как угол второй четверти, в которой синус положительный, то в правой части равенства не нужно ставить знак «минус».
  2. Поскольку аргумент имеет вид то название функции «синус» не меняется. Значит,

Второй способ:

(в третьей четверти тангенс положительный, название функции не меняется).

(в третьей четверти косинус отрицательный, название функции не меняется). (в четвертой четверти котангенс отрицательный, название функции не меняется).

Пример:

Вычислите, используя формулы приведения:

Решение:

(в четвертой четверти косинус положительный, название функции не меняется);

(во второй четверти синус положительный, название функции не меняется);

(в третьей четверти котангенс положительный, название функции меняется);

(в четвертой четверти тангенс отрицательный, название функции не меняется).

Пример:

Найдите значение выражения:

Решение:

а) Так как синус — нечетная функция, то

Применим формулы приведения:

б) Воспользуемся свойством четности косинуса и получим:

По формулам приведения:

в) Воспользуемся свойством периодичности тангенса и получим:

Применим формулы приведения:

г) Поскольку котангенс — нечетная функция, то

Используем свойство периодичности котангенса и получим:

Пример:

По формулам приведения:

Приведите к тригонометрической функции угла

Решение:

а) Используем свойство периодичности косинуса и получим:

По формулам приведения:

б) Воспользуемся свойством периодичности котангенса:

Применим формулы приведения:

в) Так как тангенс — нечетная функция, то По формулам приведения:

г) Поскольку синус — нечетная функция, то

Воспользуемся свойством периодичности синуса и получим:

По формулам приведения:

Пример:

Приведите к тригонометрической функции угла

Решение:

Пример:

Решение:

Пример:

Решение:

а) Применим формулы приведения:

б)Воспользуемся периодичностью косинуса и формулами приведения и получим:

в)Применим формулы приведения:

г) Используем периодичность тангенса, нечетность котангенса и формулы приведения:

Пример:

Решите уравнение:

Решение:

Применим формулы приведения и получим:

Ответ:

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Синус, косинус, тангенс суммы и разности
  • Формулы двойного аргумента
  • Формулы преобразования суммы и разности синусов (косинусов) в произведение
  • Корень n-й степени из числа и его свойства
  • Функции y=tg x и y=ctg x — их свойства, графики
  • Арксинус, арккосинус, арктангенс и арккотангенс числа
  • Тригонометрические уравнения
  • Тригонометрические неравенства

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Тригонометрические уравнения — формулы, решения, примеры

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшие тригонометрические уравнения

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:Для косинуса:Для тангенса и котангенса:Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью тригонометрических формул преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

Решение. Используя формулы приведения, имеем:

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a>=cos \varphi`, ` \frac b> =sin \varphi`, `\frac c>=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt <3^2+4^2>`, получим:

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac <1+cos x>=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.


источники:

http://www.evkova.org/formulyi-privedeniya

http://matemonline.com/dh/%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F/trigonometricheskie-uravnenija/