Решить уравнение с помощью введения новой переменной

Решение уравнений методом введения новой переменной, теория, практика

В этой статье мы всесторонне разберем метод введения новой переменной. Здесь мы выясним, для решения каких уравнений этот метод предназначен, проникнем в его суть, приведем обоснование метода, доказав соответствующее утверждение, запишем алгоритм решения уравнений методом введения новой переменной и рассмотрим решения характерных примеров.

Когда применяется и в чем суть метода

Метод введения новой переменной предназначен для решения уравнений, имеющих вид f(g(x))=0 или f1(g(x))=f2(g(x)) , где f , f1 и f2 – некоторые функции, а x – неизвестная переменная. Для лучшего восприятия приведем примеры таких уравнений:

  • (x 2 ) 3 −3·x 2 +2=0 , это уравнение имеет вид f(g(x))=0 , здесь g(x)=x 2 , а функция f такая, что f(t)=t 2 −3·t+2 ;
  • , это уравнение вида f1(g(x))=f2(g(x)) , здесь в качестве g(x) можно рассматривать x 2 +2·x , тогда функции f1 и f2 таковы, что и ;
  • , это уравнение, имеющее вид f(g(x))=0 , где , а функция f описывается как .

Понятно, что f(g(x))=0 и f1(g(x))=f2(g(x)) — равносильные уравнения, так как уравнение f1(g(x))=f2(g(x)) приводится к виду f(g(x))=0 при помощи равносильного преобразования, заключающегося в переносе выражения f2(g(x)) из правой части в левую с противоположным знаком. Поэтому дальнейшую теорию мы будем излагать только для уравнений вида f(g(x))=0 , это сделано в угоду краткости без ущерба для общности.

Суть метода введения новой переменной для решения уравнения f(g(x))=0 состоит во введении новой переменной t как g(x)=t с целью нахождения всех корней исходного уравнения через множество решений T уравнения f(t)=0 с новой переменной t и использование равенства g(x)=t . Забегая немного вперед, скажем, что корнями исходного уравнения являются все такие значения x , которые удовлетворяют условию g(x)∈T . В частности,

  • если T – пустое множество, то есть, уравнение f(t)=0 не имеет решений, то условие g(x)∈T определяет пустое множество, а это означает, что исходное уравнение не имеет решений;
  • если T – конечное множество, то есть, уравнение f(t)=0 имеет n решений t1, t2, …, tn , то условие g(x)∈T есть не что иное, как совокупность уравнений g(x)=t1, g(x)=t2, …, g(x)=tn , а это означает, что решением исходного уравнения является решение совокупности уравнений g(x)=t1, g(x)=t2, …, g(x)=tn .

Поясним на примере. Возьмем уже упомянутое выше уравнение (x 2 ) 3 −3·x 2 +2=0 . Введение новой переменной x 2 =t позволяет от исходного уравнения перейти к кубическому уравнению t 3 −3·t+2=0 с новой переменной (заменяем в исходном уравнении x 2 на t ). Множество решений этого уравнения T (оно в нашем случае состоит из двух чисел t1=1 и t2=−2 , то есть, T= <−2, 1>) и использование равенства x 2 =t дают возможность определить все корни исходного уравнения. Они определяются по условию x 2 ∈ <−2, 1>, которое есть не что иное, как совокупность двух уравнений x 2 =−2 , x 2 =1 .

В основе метода введения новой переменной лежит следующее утверждение:

Решение уравнения f(g(x))=0 есть множество значений переменной x , удовлетворяющих условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 .

Приведем обоснование озвученного утверждения в следующем пункте.

Обоснование

Докажем утверждение, лежащее в основе метода введения новой переменной, которое мы привели в предыдущем пункте. Для этого нужно доказать два момента:

  • что любой корень уравнения f(g(x))=0 удовлетворяет условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 ,
  • что любое значение переменной x , удовлетворяющее условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 , является корнем уравнения f(g(x))=0 .

Начнем с первой части. Пусть x0 – корень уравнения f(g(x))=0 . Докажем, что x0 удовлетворяет условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 .

Так как x0 – корень уравнения f(g(x))=0 , то f(g(x0))=0 – верное числовое равенство. Из этого равенства следует, что g(x0) – корень уравнения f(t)=0 . А из этого следует, что g(x0) принадлежит множеству всех корней уравнения f(t)=0 .

Первая часть доказана. Переходим к доказательству второй части утверждения.

Пусть x0 удовлетворяет условию g(x)∈T , где T – множество всех корней уравнения f(t)=0 . Докажем, что x0 является корнем уравнения f(g(x))=0 .

Так как x0 удовлетворяет условию g(x)∈T , то g(x0)∈T , то есть, g(x0) – это один из корней уравнения f(t)=0 . Значит, f(g(x0))=0 – верное числовое равенство. А из этого равенства следует, что x0 – корень уравнения f(g(x))=0 .

Так доказана вторая часть утверждения и все утверждение в целом.

Алгоритм решения уравнений методом введения новой переменной

Приведенная выше информация позволяет записать алгоритм решения уравнения f(g(x))=0 методом введения новой переменной:

  • Вводится новая переменная t как g(x)=t , и осуществляется переход от исходного уравнения f(g(x))=0 со старой переменной x к уравнению f(t)=0 с новой переменной t .
  • Решается полученное уравнение с новой переменной. При этом
    • если оно не имеет корней, то делается вывод об отсутствии корней у исходного уравнения,
    • если уравнение имеет корни, то выполняются следующие шаги алгоритма.
  • Осуществляется возврат к старой переменной. Для этого
    • если решенное на предыдущем шаге уравнение имеет единственный корень, обозначим его t1 , то составляется уравнение g(x)=t1 ,
    • если решенное на предыдущем шаге уравнение имеет два, три или любое другое, но конечное число корней, обозначим их t1, t2, …, tn , то составляется совокупность уравнений g(x)=t1, g(x)=t2, …, g(x)=tn ,
    • если же решенное на предыдущем шаге уравнение имеет бесконечно много корней, и они составляют числовое множество T , то составляется совокупность уравнений, неравенств и двойных неравенств, отвечающая выражению g(x)∈T (например, если решением уравнения с новой переменной t является числовое множество (−∞, t1)∪2>∪[t3, t4) , что то же самое , то соответствующая совокупность будет иметь вид ).
  • Наконец, решается составленное уравнение или совокупность – ее решение есть искомое решение исходного уравнения.

Решение примеров

Обычно первое знакомство с методом введения новой переменной происходит в школе в рамках темы «решение рациональных уравнений». В частности, рациональными являются биквадратные уравнения, стандартным методом решения которых как раз является метод введения новой переменной. Для примера приведем краткое решение методом введения новой переменной биквадратного уравнения x 4 −3·x 2 +5=0 . После представления его в виде (x 2 ) 2 −3·x 2 +5=0 , вводим новую переменную x 2 =t , это позволяет перейти к квадратному уравнению с новой переменной: t 2 −3·t+5=0 . Оно не имеет действительных корней, так как его дискриминант D=(−3) 2 −4·1·5=−11 – отрицательный, откуда заключаем, что исходное уравнение не имеет корней.

Среди рациональных уравнений масса и других типичных представителей, решающихся методом введения новой переменной. Такими, во-первых, являются уравнения, в которых переменная фигурирует только в одинаковых квадратных двучленах, например (x 2 −5·x+4)·(x 2 −5·x+6)=120 , (x 2 +5) 2 −11·(x 2 +5)+28=0 , . Во-вторых, через введение новой переменной решаются уравнения, в которых переменная находится только во взаимно обратных дробях, например, , здесь одна из дробей принимается за t , а другая, очевидно, выражается через t как 1/t , ведь на ОДЗ для данного уравнения . В-третьих, упомянем про возвратные уравнения, которые тоже решаются методом введения новой переменной, а именно . Решения подобных уравнений Вы без труда найдете в статье, упомянутой в первом предложении этого пункта, а также на страницах школьных учебников, например, [1, c. 74-75, 80; 2, с. 150-152; 3, с. 213-216].

Продвигаясь дальше в школьном курсе математики по пути знакомства с уравнениями, нам встречаются иррациональные, тригонометрические, показательные, логарифмические и другие уравнения, и каждый раз мы возвращаемся к методу введения новой переменной для их решения. Для уравнений каждого вида есть свои особенности в плане введения новой переменной. Рекомендуем ознакомиться с ними в следующих материалах:

  • решение иррациональных уравнений методом введения новой переменной,
  • метод введения новой переменной при решении показательных уравнений,
  • решение показательных уравнений методом введения новой переменной,
  • решение тригонометрических уравнений методом введения новой переменной.

В заключение покажем пример решения уравнения, которое после введения новой переменной имеет бесконечное множество решений. Подобные случаи встречаются крайне редко, и тем они еще более интересны. В них главное разобраться с особенностями возврата к старой переменной.

Решите уравнение

Памятка «Использование метода введения новой переменной»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Приемы решения дробных рациональных уравнений.

Использование алгоритма решения дробных рациональных уравнений.

При решении дробных рациональных уравнений целесообразно поступать по следующему алгоритму:

1. найти общий знаменатель дробей, входящих в уравнение, предварительно разложив знаменатели на множители;

2. умножить обе части уравнения на общий знаменатель;

3. решить получившееся целое уравнение;

4. исключить из его корней те, которые обращают в нуль общий знаменатель.

НОЗ: 2х(2 – х)

D = b 2 – 4ac = (-6) 2 — 4·1·8 = 36 – 32 = 4 > 0 , уравнение имеет 2 корня;

;

;

;

;

Если х = 2, то 2х(2 – х) = 2·2(2 – 2) = 0, не является корнем уравнения.

Если х = 4, то 2х(2 – х) = 2·4(2 – 4) ≠ 0.

Ответ: 4 (с учетом проверки).

Использование условия равенства дроби нулю для уравнений вида .

Решение уравнений основано на следующем утверждении: дробь равна нулю тогда и только тогда, когда ее числитель равен нулю, а знаменатель отличен от нуля (на 0 делить нельзя!).

Решение уравнения вида проводится в два этапа:

2. выяснить для каждого корня, обращается ли при найденном значении переменной х знаменатель дроби g(x) в нуль;

3. если g(x)=0 , то полученный корень уравнения f(x)=0 не является корнем исходного уравнения.

;

D = b 2 – 4ac = (-5) 2 — 4·2·3 = 25 – 24 = 1 > 0, уравнение имеет 2 корня.

;

;

;

; ;

2. Выполним проверку (не обращает ли каждый из найденных корней в нуль знаменатель).

Если х = 1; то 9х – 13,5 = 9·1 – 13,5 ≠ 0;

Если х = 1,5; то 9х–13,5= 9·1,5–13,5=13,5-13.5=0, не является корнем уравнения.

Ответ: 1 (с учетом проверки).

Использование основного свойства пропорции для уравнений вида .

Решение уравнений основано на следующем утверждении: в пропорции произведение крайних членов равно произведению ее средних членов. Т.е. ad = bc .

Решение уравнения вида проводится в два этапа:

2. выяснить для каждого корня, обращаются ли при найденном значении переменной х знаменатели дробей g(x) и q(x) в нуль;

3. если g(x)=0 или q(x)=0, то полученный корень уравнения f(x)·q(x)= g(x)·p(x) не является корнем исходного уравнения.

;

х 2 – 4х – 2х + 8 = х 2 + 3х + 2х + 6;

.

2. Выполним проверку (не обращает ли найденный корень в нуль знаменатели дробей).

Если ; то х + 2 = + 2 ≠ 0;

Если х =; то х — 4 = — 4 ≠ 0

Ответ: (с учетом проверки).

Использование метода введения новой переменной.

Дробные рациональные уравнения решаются с помощью введения новой переменной.

;

Введем новую переменную, обозначив х 2 + 2х – 3 через у. Тогда исходное уравнение сведется к уравнению с переменной у.

Пусть у = х 2 + 2х – 3, тогда х 2 + 2х – 8 = (х 2 + 2х – 3) – 5 = у – 5 и уравнение примет вид

;

;

;

24у = 15у – 75 + 2у 2 — 10у;

24у — 15у + 75 — 2у 2 + 10у= 0;

D = b 2 – 4ac = (-19) 2 — 4·2·(-75) = 361 + 600 = 961 > 0, уравнение имеет 2 корня;

;

;

;

; ;

Выполним проверку (не обращает ли каждый из найденных корней в нуль знаменатель).

Если у = -3; то у – 5 = -3 – 5 ≠ 0;

Если у = 12,5; то у – 5 = 12,5 – 5 ≠ 0.

Т.к. у = х 2 + 2х – 3, то получим уравнения:

х 2 + 2х – 3 = -3 и х 2 + 2х – 3 = 12,5.

Решая уравнение х 2 + 2х – 3 = 12,5; получим:

; .

Решая уравнение х 2 + 2х – 3 = -3; получим:

Т.о. найдены четыре корня заданного уравнения.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 945 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 687 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 315 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 590 524 материала в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

  • 24.11.2015
  • 628
  • 0
  • 24.11.2015
  • 4502
  • 169
  • 24.11.2015
  • 352
  • 0
  • 24.11.2015
  • 540
  • 0
  • 24.11.2015
  • 406
  • 0
  • 24.11.2015
  • 5223
  • 27

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 24.11.2015 1021
  • DOCX 152.5 кбайт
  • 0 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Руденко Ирина Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 6 лет и 2 месяца
  • Подписчики: 0
  • Всего просмотров: 3572
  • Всего материалов: 5

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Курганской области дистанционный режим для школьников продлили до конца февраля

Время чтения: 1 минута

В России действуют более 3,5 тысячи студенческих отрядов

Время чтения: 2 минуты

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных

Время чтения: 1 минута

Каждый второй ребенок в школе подвергался психической агрессии

Время чтения: 3 минуты

Ленобласть распределит в школы прибывающих из Донбасса детей

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Решение уравнения методом введения новой переменной

Математика. Уравнения. 283гр. Дистанционное обучение.

Просмотр содержимого документа
«Решение уравнения методом введения новой переменной»

21.04.20. Задание: Записать конспект и решить уравнения

Тема: Основные приемы решения уравнений:

Решение уравнения методом введения новой переменной

Метод введения новой переменной:

1. в уравнении какая-то его часть заменяется другой переменной (a, y, t. )

(прежнее неизвестное одновременно с новым в уравнении быть не может);

2. решается новое уравнение;

3. возвращаются к обозначенному и, используя полученное число (корни), вычисляют требуемое неизвестное.

Пример: Решить уравнение (2x−21) 2 −5(2x−21)+4=0.

Это уравнение можно решить и без использования новой переменной (раскрываются скобки по формуле разности квадратов и т. д.), но решение будет длинным и с большими числами.

Используем то, что обе скобки равны.

Обозначаем 2x−21=y. Получается простое квадратное уравнение:

D=b 2 -4ac=(-5) 2 -4•1•4=25-16=9

Возвращаемся к обозначенному:

Методом введения новой переменной решаются биквадратные уравнения:

ax 4 +bx 2 +c=0, где a,b,c ∈R; x 2 =y; ay 2 +by+c=0. В биквадратных уравнениях всегда используется новая переменная. Получается квадратное уравнение

Пример: Решить уравнение:

x 4 −13x 2 +12=0; x 2 =y, тогда

1)x 2 =12; или 2) x 2 =1,

Задание: Решить уравнения 1. (3x−4) 2 +3 (3x−4)-4=0.


источники:

http://infourok.ru/pamyatka-ispolzovanie-metoda-vvedeniya-novoy-peremennoy-611335.html

http://multiurok.ru/index.php/files/osnovnye-priemy-resheniia-uravnenii-reshenie-ura-1.html