Решить уравнение способом сложения 7 класс

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Немного теории.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\< \begin 3x+y=7 \\ -5x+2y=3 \end \right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ \left\< \begin y = 7—3x \\ -5x+2(7-3x)=3 \end \right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\< \begin 2x+3y=-5 \\ x-3y=38 \end \right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ \left\< \begin 3x=33 \\ x-3y=38 \end \right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение \( x-3y=38 \) получим уравнение с переменной y: \( 11-3y=38 \). Решим это уравнение:
\( -3y=27 \Rightarrow y=-9 \)

Таким образом мы нашли решение системмы уравнений способом сложения: \( x=11; y=-9 \) или \( (11; -9) \)

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Урок по алгебре в 7-м классе на тему: «Решение систем линейных уравнений способом сложения»

Разделы: Математика

1. Научить решать системы уравнений способом сложения;

2. Отработать алгоритм решения систем уравнений методом подстановки и сложения;

3. Воспитание внимания, точности, логики рассуждения.

Оборудование : учебник Ю.Н. Макарычев, Н.Г. Миндюк, Алгебра-7 класс, проверочный материал.

Ход урока

I. Организационный момент:

Сегодня на уроке мы должны научиться решать системы уравнений способом сложения.

II. Устный счет:

  1. Дано уравнение 4x-3y=-2. Укажите какое-либо решение (пару чисел (x;y)) этого уравнения.
  2. Выразите переменную y через x , если 3x-0.5y=1.
  3. Решите систему уравнений
  4. Является ли пара чисел (-2; -1) решением системы уравнений
  5. Четыре медвежонка тяжелее медведицы на 30 кг, а два таких медвежонка легче медведицы на 80 кг. Найдите массу медведицы.

III. Объяснение нового материала.

Составим систему уравнений для задачи с медвежатами. Пусть масса медведицы х кг, а одного медвежонка у кг.

Решим данную систему способом подстановки, при этом ответим на вопросы:

Метод подстановки

  1. Правильно ли выразили одно неизвестное через другое в одном из уравнений?
  2. Правильно ли вы подставили полученное выражение в другое уравнение?
  3. Правильно ли вы решили уравнение с одной неизвестной?
  4. Правильно ли вы подставили найденное значение для вычисления значения другой неизвестной?

В результате получаем: х=190, у=55.

А теперь подумаем, как решить эту систему методом сложения?

Умножить одно из уравнений системы или каждое из них на какое-либо число, чтобы коэффициенты при одной из переменных стали противоположными.

у=55, а х=80+2*55 , х=190.

Какие можно поставить вопросы к методу сложения?

Метод сложения

  1. Каковы коэффициенты при х и y?
  2. При какой неизвестной вы делали коэффициенты противоположными?
  3. Для какого уравнения требуется дополнительный множитель, и какой именно?
  4. Все ли члены выбранного уравнения вы умножили на этот множитель?
  5. Правильно ли вы выполнили сложение левых и правых частей уравнений в полученной системе?
  6. Правильно ли вы решили уравнение с одной неизвестной?
  7. В какое уравнение вы подставили полученное значение неизвестной?
  8. Правильно ли вычислено значение другой неизвестной?

Подумайте, а можно ли решить данную систему графически?

Если да, то дома оформить решение графически.

IV. Закрепление изученного материала.

Решите систему уравнений методом сложения.

а)3

Закончите решение системы:

б)

Работа с учебником. Глава VI,§ 16 п 43 стр 203, алгоритм стр205- прочитать.

Выполнить у доски (парами) № 1147 (а;б)

а)Ответ:(2;1)

б) Ответ: (-8;-4).

Самостоятельная работа по учебнику: № 1147 (в;г)

в)

г)

Ответ: в) (60;30), г) (2; -1/4).

V. Домашняя работа:

выполнить графически систему уравнений, если сможете, рассмотреть примеры 1-3 учебника, решить №1148 (а), повторить №1162.

VI. Познакомимся с контрольным листом и домашней недельной проверочной работой.

Лист контроля

  1. Какое уравнение называется линейным уравнением с двумя неизвестными?
  2. Что значит решить линейное уравнение с двумя неизвестными?
  3. Что называется решением линейного уравнения с двумя неизвестными? Как записывается это решение?
  4. Что является графиком линейного уравнения с двумя неизвестными?
  5. Что называется системой двух линейных уравнений с двумя неизвестными?
  6. Что называется решение системы двух линейных уравнений с двумя неизвестными?
  7. Что значит решить систему двух линейных уравнений с двумя неизвестными?
  8. Какими методами можно решить систему двух линейных уравнений с двумя неизвестными? Каков алгоритм решения каждым методом?
  9. Как решается одно линейное уравнение с двумя неизвестными?
  10. Сколько решений имеет линейное уравнение с двумя неизвестными?

Как записывается общее решение линейного уравнения с двумя неизвестными?

Решение системы линейных уравнений методом сложения

Алгоритм решения системы линейных уравнений методом сложения

  1. Умножить обе части одного или обоих уравнений так, чтобы коэффициенты при одной из переменных стали противоположными (или равными) числами.
  2. Сложить (или отнять) уравнения, чтобы избавиться от одной из переменных.
  3. Решить второе уравнение относительно выраженной переменной.
  4. Решить полученное уравнение с одной переменной.
  5. Найти вторую переменную.
  6. Записать ответ в виде упорядоченной пары найденных значений переменных.

Умножаем первое уравнение на 2

Отнимаем от первого уравнения второе:

Находим y из первого уравнения:

В последовательной записи:

$$ <\left\< \begin 3x+y = 5 | \times 2 \\ x+2y = 5 \end \right.> \Rightarrow (-) <\left\< \begin 6x+2y = 10 \\ x+2y = 5 \end \right.> \Rightarrow <\left\< \begin 5x = 5 \\ x+2y = 5 \end \right.> \Rightarrow <\left\< \begin x = 1 \\ y = 5-3x = 2 \end \right.> $$

Примеры

Пример 1. Решите систему уравнений методом сложения:

$ а) <\left\< \begin 5x-4y = 3 | \times 2 \\ 2x-3y = 4 | \times 5 \end \right.> \Rightarrow <\left\< \begin 10x-8y = 6 \\ 10x-15y = 20 \end \right.> \Rightarrow <\left\< \begin 7y = -14 \\ 2x-3y = 4 \end \right.> \Rightarrow <\left\< \begin x = \frac<3y+4> <2>= -1 \\ y=-2 \end \right.> $

$ б) <\left\< \begin 4x-3y = 7 | \times 3 \\ 3x-4y = 0 | \times 4 \end \right.> \Rightarrow (-) <\left\< \begin 12x-9y = 21 \\ 12x-16y = 0 \end \right.> \Rightarrow <\left\< \begin 7y = 21 \\ x = \frac<4> <3>y \end \right.> \Rightarrow <\left\< \begin x = 4 \\ y = 3 \end \right.> $

$ в) <\left\< \begin 5a-4b = 9 | \times 2 \\ 2a+3b = -1 | \times 5 \end \right.> \Rightarrow (-) <\left\< \begin 10a-8b = 18 \\ 10a+15b = -5 \end \right.> \Rightarrow <\left\< \begin -23b = 23 \\ a = \frac<-3b-1> <2>\end \right.> \Rightarrow <\left\< \begin a = 1 \\ b = -1 \end \right.> $

$ г) <\left\< \begin 7a+4b = 5 \\ 3a+2b = 1 | \times (-2) \end \right.> \Rightarrow (+) <\left\< \begin 7a+4b = 5 \\ -6a-4b = -2 \end \right.> \Rightarrow <\left\< \begin a = 3 \\ b = \frac<1-3a> <2>\end \right.> \Rightarrow <\left\< \begin a = 3 \\ b = -4 \end \right.>$

Пример 2. Найдите решение системы уравнений:

$$а) <\left\< \begin \frac<4>-y = 7 \\ 3x+ \frac <2>= 9 | \times 2\end \right.> \Rightarrow (+) <\left\< \begin \frac <4>-y = 7 \\ 6x+y = 18 \end \right.> \Rightarrow <\left\< \begin 6 \frac<1> <4>x = 25 \\ y = 18-6x\end \right.> \Rightarrow $$

$$\Rightarrow <\left\< \begin x = 25: \frac<25> <4>= 25 \cdot \frac<4> <25>= 4 \\ y = 18-6 \cdot 4 = -6 \end \right.> $$

$ в) <\left\< \begin 3(5x-y)+14 = 5(x+y) \\ 2(x-y)+9 = 3(x+2y)-16 \end \right.> \Rightarrow <\left\< \begin 15x-3y+14 = 5x+5y \\ 2x-2y+9 = 3x+6y-16 \end \right.> \Rightarrow $

$ г) <\left\< \begin 5-3(2x+7y) = x+y-52 \\ 4+3(7x+2y) = 23x \end \right.> \Rightarrow <\left\< \begin 5-6x-21y = x+y-52 \\ 4+21x+6y = 23x \end \right.> \Rightarrow <\left\< \begin 7x+22y = 57 \\ 2x-6y = 4 |:2 \end \right.>$

$$ \Rightarrow <\left\< \begin 7x+22y = 57 \\ x-3y = 2 | \times 7 \end \right.> \Rightarrow (-) <\left\< \begin 7x+22y = 57 \\ 7x-21y = 14 \end \right.> \Rightarrow <\left\< \begin 43y = 43 \\ x = 3y+2 \end \right.> \Rightarrow <\left\< \begin x = 5 \\ y = 1 \end \right.>$$

Пример 3*. Найдите решение системы уравнений:

Введём новые переменные: $ <\left\< \begin a = \frac<1> \\ b = \frac<1> \end \right.> $

Перепишем систему и найдём решение для новых переменных:

$$ <\left\< \begin2a+3b = 1| \times 3 \\ 3a-5b = 11 | \times 2 \end \right.> \Rightarrow (-) <\left\< \begin 6a+9b = 3 \\ 6a-10b = 22 \end \right.> \Rightarrow <\left\< \begin 19b = -19 \\ a = \frac<1-3b> <2>\end \right.> \Rightarrow <\left\< \begin a = 2 \\ b = -1 \end \right.> $$


источники:

http://urok.1sept.ru/articles/312754

http://reshator.com/sprav/algebra/7-klass/reshenie-sistemy-linejnyh-uravnenij-metodom-slozheniya/