Решить уравнение в первом приближении

Метод функций Ляпунова. Устойчивость по первому (линейному) приближению

По этой ссылке вы найдёте полный курс лекций по математике:

Метод функций Ляпунова состоит в исследовании устойчивости точки покоя системы дифференциальных уравнений с помощью подходящим образом выбранной функции v(t, 2], 22. ж„) — так называемой функции Ляпунова, причем делается это без предварительного построения решения системы; в этом неоценимое преимущество метода. Ограничимся рассмотрением автономных систем для которых , есть точка покоя. Идея метода состоит в следующем.

Предположим, что на устойчивость исследуется точка покоя системы (1). Если бы с возрастанием t точки всех траекторий приближались к началу координат или хотя бы не удалялись от него, то рассматриваемая точка покоя была бы устойчивой. Проверка выполнения этого условия не требует знания решений системы. Действительно, если р — расстояние от точки траектории , до начала координат (производная вдоль траектории); Правая часть в (2) есть известная функция от ж„, и можно .исследовать ее знак.

Если окажется, что $0, тоточкннавс^с тдаедориях^удадоютая откачала координат щ>иэозрастрйии иточкапокояж, , устойчива. Однако точка покоя может бьггь устойчивой и при немоно» трнном пркбдажрда £ точе* траекторий (например, в случае, когда траектории — эллипсы). Поэтому А. М.Ляпунов вместо функции р рассматривал функции являющиеся в некотором смысле «обобщенным расстоянием» of начала координат. Определение 1.

Функция определенная в некоторой окрестности начала координат, называется знакоопределенной (знакоположительной или знакоотрица-телъной), если в области G где h — достаточно малое положительное число, она может принимать значения только одного определенного знака и обращается в нуль лишь при Так, в случав п = 3 функции Метод функций Ляпунова теорема Липунова об асимптотической устойчивости Устойчивость по первому (линейному) приближению будут знакоположительными, причем здесь величина может быть взята сколь угодно большой. Определение 2.

Функция называется знакопостоянной (положительной или отрицательной), если она в области G может принимать значения только одного определенного знака, но может обращаться в нуль и при . Например, функция будет знакопостоянной (положительной). В самом деле, функцию ) можно представить так: отсюда видно, что она неотрицательна всюду, но обращается в нуль и при , а именно при и любых Х|, XI таких, что Пусть — дифференцируемая функция своих аргументов, и пусть являются некоторыми функциями времени, удовлетворяющими системе дифференциальных уравнений (1).

Тогда для полной производной функции t; по времени имеем Определение 3. Величина ^, определяемая формулой (3), называется полной производной функции v по времени, составленной в силу системы уравнений (1). Определение 4. Функций .у обладающую свойствами: дифференцируема в некоторой окрестности О начала координат; 3) полная производная £ функции срставденная в силу системы (1), . всюду в П, называют функцией Ляпунова. Теорема 3 (теорема Липуноеа об устойчиюстм).

Если для системы дифференциальных уравнений существует дифференцируемая знакоопределенная функция полная производная J которой по времени, составленная в силу системы (1), есть знакопостоянная функция (знака, противоположного с v) или тождественно обращается в ноль, то точка покоя ) системы (1) устойчива. Приведем идею доказательства.

Возможно вам будут полезны данные страницы:

Пусть для определенности есп» знакоположительная функция, для которой как причем v = 0 лишь при то начало координат есть точка строгого минимума функции хп). В окрестности начала координат поверхности уровня функции v являются, как можно показать, замкнутыми поверхностями, внутри которых находится начало координат. Чтобы картина стала нагляднее, остановимся на случае . Так как v0 для малых только для то поверхность в общих чертах напоминает параболоид, вогнутый вверх (рис. 19).

Линии уровня = С представляют собой семейство замкнутых кривых, окружающих начало координат. При этом если то линия уровня целиком лежит внутри области, ограниченной линией v = С2. Зададим е > 0. Придо-статочно малом С линия уровня v = С целиком лежит в £-окрестности начала координат, но не проходит через начало. Следовательно, можно выбрать 6 > 0 такое, что окрестность начала координат целиком лежит внутри области, ограниченной линией v = Су причем в этой окрестности .

Рассмотрим траекторию системы (1), выходящую в начальный момент времени t = to из какой-нибудь точки -окрестнрсти начала координат.

Эта траектория при возрастании t никогда не пересечет ни одной из линий v(x\,x2) изнутри наружу. В самом деле, если бы такое пересечение было возможным в какой-нибудь точке, то в этой точке или в ее окрестности функция необходимо имела бы положительную производную t так как при переходе от какой-нибудь линии v = С к другой линии этого семейства, охватывающей первую, функция v(x\, х<) возрастает. Но это невозможно в силу того, что по условию .

Значит, если в начальный момент времени какая-нибудь траектория находилась внутри области, ограниченной линией v = С, тоона и в дальнейшем будет все время оставаться внугри этой области. Отсюда ясно, что для всякого е > 0 существует 6 > 0 такое, что любая траектория системы, выходящая в начальный момент времени t = to из ^-окрестности начала координат, для всех t ^ t0 будет содержаться в £-окрестности начала. Это и означает устойчивость точки покоя я, системы (1).

Теорема 4 (теорема Ляпунова об асимптотической устойчивости). Если для системы дифференциальных уравнений существует дифференцируемая знакоопределенная функция , полная производная которой по времени, составленная в силу системы, есть также знакоопреде-ленная функция знака, противоположного с v, то точка покоя п, системы (1) асимптотически устойчива. Пример. Исследовать на устойчивость точку покоя 0(0,0) системы 4

Выберем в качестве функции функцию Метод функций Ляпунова теорема Липунова об асимптотической устойчивости Устойчивость по первому (линейному) приближению Эта функция знакоположительная. В силу системы ) найдем Из теоремы 3 следует1, что точка покоя системы устойчива (центр). Асимптотической устойчивости нет, так как траектория системы — окружности. Пример 2. Исследовать на устойчивость точку покоя 0(0,0) системы Беря опять найдем

Таким образом, £ есть знакоотрицательная функция. В силу теоремы 4 точка покоя системы устойчива асимптотически. Теорема 5 (о неустойчивости). Пусть для системы дифференциальных уравнений существует дифференцируемая в окрестности начала координат функция такая, что Если ее полная производная составленная в силу системы (4), есть знакоположительная функция и сколь угодно близко от начала координат имеются точки, в которых функция принимает положительные значения, то точка покоя системы (4) неустойчива.

Пример 3. Исследовать не устойчивость точку покоя системы Возьмем функцию Для нее функция знакоположительная. Так как сколь угодно близко к началу координат найдутся точки, в которых v > 0 (например, вдоль прямой , то выполнены все условия теоремы 5 и точка покоя неустойчива (седло). Метод функций Ляпунова оказывается универсальным и эффективным для широкого круга проблем теории устойчивости. Недостаток же метода в том, что достаточно общего конструктивного способа построения функций Ляпунова пока нет.

В простейших случаях функцию Ляпунова

можно искать в виде — Устойчивость по первому (линейному) приближению Пусть имеем систему дифференциальных уравнений и пусть естьточка покоя системы, Будем предполагать, что функций дифференцируемы в окрестности начала координат достаточное число раз. Применяя формулу Тейлора, разложим функциипо х в Ькрестности качала координат: или, учитывая (2), где . а слагаемые Я, содержат члены не ниже второго порядка малости относительно .

Система дифференциальных уравнений (1) примет вид Так как понятие устойчивости точки покоя связано с малой окрестностью начала координат в фазовом пространстве, то естественно ожидать, что поведение решения (1) будет определяться главными линейными членами разложения функций fi по ж. Поэтому наряду с системой (3) рассмотрим систему называемую системой уравнений первого (линейного) приближения для системы (3). Вообще говоря, строгой связи между системами (3) и (4) нет.

Рассмотрим, например, уравнение Здесь f(x) = 0; линеаризированное уравнение для уравнения (5) имеет вид Решение x(t) = 0 уравнения (6) является устойчивым. Оно же, будучи решением исходного уравнения (5), не является для него устойчивым. В самом деле, каждое действительное решение уравнения (5), удовлетворяющее начальному условию имеет вид и перестает существовать при t = — (решение непродолжаемо вправо). Теорема 6.

Если все корни характеристического уравнения имеют отрицательные действительные части, то точка покоя ,. системы (4) и системы (3) асимптотически устойчива. При выполнении условий теоремы возможно исследование на устойчивость по первому приближению. Теорема 7. Если хотя бы один корень характеристического уравнения (7) имеет положительную действительную часть, то точка покоя ж, = 0 системы (4) и системы (3) неустойчива.

В этом случае также возможно исследование на устойчивость по первому приближению. Наметим идею доказательства теорем 6 и 7. -4 Пусть для простоты корни „ характеристического уравнения (7) — действительные и различные. В этом случае существует такая невырожденная матрица Т с постоянными элементами, что матрица Т-‘AT будет диагональной: Система (3) при том же преобразовании перейдет в систему причем в R< опять входят члены не ниже второго порядка малости относительно Рассмотрим следующие возможности:

Все корни — отрицательные, Положим тогда производная £ в силу системы () будет иметь вид при — малая более высокого порядка, чем квадратичная Таким образом, в достаточно малой окрестности fi точки функция |, знакоположительна, а производная ^f — знакоотрицательна, и, значит, точка покоя асимптотически устойчива. 2. Некоторые из корней (например, положительные, а остальные — отрицательные. Положим тогда Отсюда видно, что сколь угодно близко к началу координат найдутся точки (например, такие, у которых .

Что касается производной то, поскольку отрицательны, производная — знакоположительная функция. В силу теоремы 5 точка покоя 0(0,0. 0) неустойчива. В критическом случае, когда все действительные части корней характеристического уравнения неположительны, причем действительная часть хотя бы одного корня равна нулю, на устойчивость тривиального решения системы (3) начинают влиять нелинейные члены Ri и исследование на устойчивость по первому приближению становится невозможным.

Пример 1. Исследовать на устойчивость по первому приближению точку покоя системы Система первого приближения имеет вид Нелинейные члены удовлетворяют нужным условиям: их порядок не меньше 2. Составляем характеристическое уравнение для системы Корни характеристического уравнения . Поскольку , нулевое решение системы неустойчиво. Пример 2. Исследуем на устойчивость точку покоя 0(0, 0) системы « Точка покоя системы асимптотически устойчива, так как для этой оистемы функция Ляпунова удовлетворяет условиям теоремы Ляпучора об асимптотической устойчивости. В частности.

В то же время точка покоя системы неустойчива. В самом деле, для функции в силу системы (»») имеем функция знакоположительная. Сколь угодно близко от начала координат 0(0,0) имеются точки, в которых В силу теоремы 5 заключаем о неустойчивости точки покоя 0(0,0) системы (*»). Для системы (*) и (**) система первого приближения одна и та же: Характеристическое уравнение для системы () имеет чисто мнимые корни — критический случай (действительные части корней характеристического уравнения равны нулю).

Для системы первого приближения ( качало координат является устойчивой точкой покоя — центром. Системы ) получаются малым возмущением правых частей в окрестности начала координат. Однако эти малые возмущения приводят к тому, что для системы (*) точка покоя ) становится асимптотически устойчивой, а для системы (*t) — неустойчивой. Этот пример показывает, что в критическом случае нелинейные члены могут влиять на устойчивость точки покоя. Задам.

Исследовать на устойчивость точку покоя 0(0,0) системы где функция /(х, у) разлагается в сходящийся отеленной ряд и Упражнения Метод функций Ляпунова теорема Липунова об асимптотической устойчивости Устойчивость по первому (линейному) приближению Пользуясь определением, исследуйте на устойчивость решения уравнений: Установите характер точки покоя системы и нарисуйте расположение траекторий в окрестности этой точки:

Методом функций Ляпунова исследуйте на устойчивость точку покоя 0(0,0) систем: Исследуйте на устойчивость по первому (линейному) приближению точку покоя 0(0,0) . систем: 1. Асимптотически устойчиво. 2. Неустойчиво. 3. Устойчиво. 4. Устойчивый узел. 5. Седло. 6. Устойчивый фокус. 7. Центр. 8. Асимптотически устойчива, v = 7х2 + у2. 9. Устойчива, v = х2 + у2. 10. Неустойчива, х2 — у2. 11. Асимптотически устойчива. 12. Неустойчива.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

На каждый день | Алгебра

  • Аналитическая геометрия (11 записей)
  • Тригонометрия (10 записей)
  • Справочник-словарь (28 записей)
  • Проектировщику (231 записей)

СТЕПЕНИ И КОРНИ

ПРИБЛИЖЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ

ЛОГАРИФМЫ

ПРОГРЕССИИ

ФАКТОРИАЛ

СОЕДИНЕНИЯ

БИНОМ НЬЮТОНА

ОПРЕДЕЛИТЕЛИ (ДЕТЕРМИНАНТЫ)

ЛИНЕЙНЫЕ УРАВНЕНИЯ

УРАВНЕНИЯ ВЫСШИХ СТЕПЕНЕЙ

2007-2020 © baurum.ru
All rights reserved.

Строительство и ремонт

О строительстве — для строителей, застройщиков,
заказчиков, проектировщиков, архитекторов

Устойчивость решений ДУ по первому приближению

Пусть имеем систему дифференциальных уравнений

и пусть , есть точка покоя системы (1), т.е. . Будем предполагать, что функции дифференцируемы в начале координат достаточное число раз.

Разложим функции по формуле Тейлора по в окрестности начала координат:

здесь , а — члены второго порядка малости относительно .

Тогда исходная система (1) запишется так:

Вместо системы (2) рассмотрим систему

называемую системой уравнений первого приближения для системы (1).

Справедливы следующие предложения.

1. Если все корни характеристического уравнения

имеют отрицательные вещественные части , то нулевое решение , системы (3) и системы (2) асимптотически устойчивы .

2. Если хотя бы один корень характеристического уравнения (4) имеет положительную вещественную часть, то нулевое решение системы (3) и системы (2) неустойчиво .

Говорят, что в случаях 1 и 2 возможно исследование на устойчивость по первому приближению.

В критических случаях, когда вещественные части всех корней характеристического уравнения (4) неположительны, причем вещественная часть хотя бы одного корня равна нулю, исследование на устойчивость по первому приближению, вообще говоря, невозможно (начинают влиять нелинейные члены ).

Пример 1. Исследовать на устойчивость по первому приближению точку покоя системы

Решение. Системы первого приближения

Нелинейные члены удовлетворяют нужным условиям: их порядок больше или равен двум. Составим характеристическое уравнение для системы (6):

Корни характеристического уравнения (7) вещественные и 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADkAAAATBAMAAADYAbjmAAAAJ1BMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+jSoGAAAADHRSTlMAwB1kQYWh8DHg0VFNsKFOAAAA2ElEQVQoz2NgwA+YhbGLszSAqRwDrJJlkWBpHQFssuoGzEUgmvEQXIgjCc6MYWA4Crb4MEKHYwaMNZGBQRJEM51CMtBNBMo4yMAgA2bINCBJq0mDKSaQrAKIZRMA5CGkJ4OdDJJ1ADll+gQG1YUI3aqrkWUt204zKAWiyTJATWY+zXKMgQEhq7oYTBUyMIiDbDVgmK6AkFWDSDLkMDAANTED/RxjAJdVg/nIx4HlCAMDTwIw1ARgso4i8MgpNgeGPwfIcw5QWaSQZFA2QrAD8UVy43RhBpIBABPuJMc3pUukAAAAAElFTkSuQmCC» style=»vertical-align: middle;» />. Следовательно, нулевое решение системы (5) неустойчиво.

Пример 2. Исследовать на устойчивость по первому приближению точку покоя систем

Решение. Точка покоя системы (8) асимптотически устойчива, так как для этой системы функция удовлетворяет всем условиям теоремы Ляпунова об асимптотической устойчивости. В частности,

В то же время точка покоя системы (9) неустойчива в силу теоремы Четаева: взяв , будем иметь .

Системы (8) и (9) имеют одну и ту же систему первого приближения

Характеристическое уравнение для системы (10)

имеет чисто мнимые корни, так что действительные части корней характеристического уравнения равны нулю.

Для системы первого приближения (10) начало координат является центром. Системы (8) и (9) получаются малым возмущением правых частей системы (10) в окрестности начала координат. Однако эти малые возмущения приводят к тому, что замкнутые траектории превращаются в спирали, в случае (8) приближающиеся к началу координат и образующие в точке устойчивый фокус, а в случае (9) — удаляющиеся от начала координат и образующие в точке неустойчивый фокус. Таким образом, в критическом случае нелинейные члены могут влиять на устойчивость точки покоя.

Пример 3. Рассмотрим замкнутый контур с линейными элементами (рис. 44); уравнение контура

Здесь — заряд конденсатора и, следовательно, — ток в цепи; — сопротивление; — индуктивность; — емкость; — нелинейные члены, имеющие степень не ниже второй, .

Решение. Уравнение (11) эквивалентно системе

для которой начало координат , есть точка покоя.

Рассмотрим систему первого приближения

Характеристическое уравнение для системы (13) имеет вид

Если , т.е. , то уравнение (14) имеет комплексные корни с отрицательной действительной частью и, значит, начало координат для системы (13) и (12) асимптотически устойчиво.

Если \frac<4L>» png;base64,iVBORw0KGgoAAAANSUhEUgAAAFEAAAAsBAMAAADvHUkaAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAD3RSTlMAmIEBQRBl6MDRIDBRsUCjJh5DAAAB1ElEQVQ4y2NgoCIwNjYgQpUaAwPL////NxBUyPIJSBh9NCZsZDhIJccXIiwXBKm0LyaskOUKSKX/BcIqI0NAKvUTCKuUAfuon7DPuS+AVDJ/JxycFgtAKln+MjBwKSAJs+mhK2TOVFL8ocXABFTNhOzUOy8F0JUucXH76AoOznAkB3DX8PzGtN8EaJ79ZwbWiUhirN18/zAUsjr+OBoiX+cmDoklViUlJbUFQIeWYqjkUlLSegSUVoJ4iNX3x5HEj0C3HCAYGEzfGJjlE1i7CccExy8GBnkFxg27wdoO41EJSivzE2SVwIayaibjVukvwMD2l7ujowHibM1UnCr15fzEkWKLNVMVl8p+JfVq1FiUwq4QmFZYy9EiXBRELRREAqAgZAGGZT9KwmI+gakyARqc/w2IsR0YnCzIKplx+Yg5vtiA5T/rBLjX1XF53f///wus8xNheQUj5Jn3eDHsgjANgCUEyymYBCOaQlb1iZrapcQUXzunGDDcn0CEQu7KAAaG/QJEqAwHWWxPOOWC0i1IZQBhlVz/QYpYiLCc6S+xBTfHJ6JVgrNvArEquYgJJMZvQILXgQiVXOVAv4sR407m41OMPRKI8hKX+Hcp4jzPjKiKAKp5cVgk81juAAAAAElFTkSuQmCC» style=»vertical-align: middle;» />, то начало координат также асимптотически устойчиво (все параметры положительны).

Асимптотическая устойчивость точки покоя видна из физических соображений: при положительном омическом сопротивлении с возрастанием ток неизбежно исчезает.

Устойчивость решений ДУ по отношению к изменению правых частей уравнений

Рассмотрим дифференциальные уравнения

где функции и непрерывны в замкнутой области плоскости и функция имеет в этой области непрерывную частную производную .

Пусть в области выполняется неравенство . Если и есть решения уравнений (1) и (2) соответственно, удовлетворяющие одному и тому же начальному условию , то

Из оценки (3) видно, что если возмущение правой части (1) достаточно мало в области , то на конечном интервале изменения разность решений уравнений (1) и (2) будет малой по абсолютной величине. Это позволяет приближенно решать сложные дифференциальные уравнения путем замены их разумно выбранными уравнениями, решаемыми проще. Последнее обстоятельство может быть использовано при решении дифференциальных уравнений, связанных с задачами физики или техники.

Пример 4. В квадрате найти приближенное решение уравнения


источники:

http://www.baurum.ru/alldays/?cat=algebra&id=3743

http://mathhelpplanet.com/static.php?p=ustoichivost-po-pervomu-priblizheniyu