Решить уравнение в вольфрам альфа

WolframAlpha по-русски

Математика с WolframAlpha ® . Объяснения с примерами.

Решение «буквенных» уравнений в Wolfram|Alpha

Задача «выразить х из уравнения (с несколькими неизвестными)» встречается довольно часто. Ее можно рассматривать, как решение уравнения с буквенными коэффициентами. Поэтому логично, что Wolfram|Alpha использует для решения таких «буквенных» уравнений запрос solve, который обычно служит для решения уравнений с одним неизвестным.

Вот простой пример такой задачи.

Запрос solve применительно к этому уравнению дает такой результат:

Здесь Wolfram|Alpha отдает приоритет отысканию переменной y. Возможно, полагая, что y это — функция, а x — ее аргумент? Кстати, тот же самый результат дает и запрос solve 2x+3y-1.

Если же из данного уравнения нужно найти именно х, то это следует указать явно. И вот, каким образом:

При этом, в отличие от первого варианта, здесь Wolfram|Alpha дает возможность посмотреть пошаговое решение задания с подробным текстовым комментарием:

(Эта замечательная особенность Wolfram|Alpha уже обсуждалась в одном из предыдущих постов Математика с Wolfram|Alpha: шаг за шагом. )

Итак, рассмотренный выше пример уже дает представление о том, как легко Wolfram|Alpha справляется с «буквенными» уравнениями. Однако, пойдет ли дело так же гладко, если вместо x и y взять другие буквы?

Запрос solve 2a+3b-1 дает следующее:

Однако, абсолютно аналогичный по структуре запрос solve 2n+3m-1 выводит совсем другой результат:

Конечно же! Логика здесь есть: Wolfram|Alpha по умолчанию считает неизвестным то, что обозначено буквой, расположенной ближе к концу алфавита. Но, если вы не уверены в своем знании английского алфавита, тогда, решая в Wolfram|Alpha буквенное уравнение, лучше каждый раз явно указывать неизвестную величину.

Естественно, теперь возникает вопрос: а что будет, если взять уравнение, которое содержит не два буквенных обозначения, а больше? Например, такое:

Как и следовало ожидать, здесь Wolfram|Alpha по запросу solve (без указания неизвестного) выводит решение квадратного уравнения относительно x:

Если же из данного уравнения нужно найти b, то запрос должен быть таким:

Аналогичным образом следует поступить, если ищем c:

Также ясно, что решение кубического уравнения

А вот, если нас интересует, как выражается из данного уравнения a, то запрос формулируем иначе:

Под конец, хочется задать Wolfram|Alpha вопрос посложнее. Например, сможет ли система решить такое «буквенное» уравнение?

Запрос solve без явного указания неизвестного выводит решение этого уравнения относительно z:

Если же нужно найти, к примеру, w, тогда, естественно, получим:

Что же касается решения трансцендентных «буквенных» уравнений, то все зависит от вида конкретного уравнения. Если уравнение допускает аналитическое решение, тогда это решение получается точно так же, как и ранее. Если же нет, тогда, по-возможности, Wolfram|Alpha выдает неявное решение в графическом виде.

Рассмотрим несколько типичных примеров.

Некоторые решения оказываются довольно неожиданными и по-своему красивыми:

Algebra

Solve equations in one or more variables both symbolically and numerically.

Solve a polynomial equation:

Solve a system of linear equations:

Solve an equation with parameters:

Solve, plot and find alternate forms of polynomial expressions in one or more variables.

Compute properties of a polynomial in several variables:

Factor a polynomial:

Compute discontinuities and other properties of rational functions.

Compute properties of a rational function:

Compute a partial fraction decomposition:

Simplify algebraic functions and expressions.

Simplify an expression:

Find properties and perform computations on matrices.

Do basic arithmetic on matrices:

Compute eigenvalues and eigenvectors of a matrix:

Perform computations with the quaternion number system.

Get information about a quaternion:

Do calculations with quaternions:

Discover properties of groups containing a finite number of elements.

Решить уравнение в вольфрам альфа

1. Решение рациональных, дробно-рациональных уравнений любой степени, показательных, логарифмических, тригонометрических уравнений.
Пример 1 . Чтобы решить уравнение x 2 + 3 x — 4 = 0, нужно ввести solve x^2+3x-4=0
Пример 2. Чтобы решить уравнение log32x = 2 , нужно ввести solve log(3, 2x)=2
Пример 3. Чтобы решить уравнение 25 x-1 = 0.2 , нужно ввести solve 25^(x-1)=0.2
Пример 4. Чтобы решить уравнение sin x = 0.5 , нужно ввести solve sin(x)=0.5

2. Решение систем уравнений.
Пример . Чтобы решить систему уравнений

нужно ввести solve x+y=5 && x-y=1
Знаки && в данном случае обозначает логическое «И».

3. Решение рациональных неравенств любой степени.
Пример . Чтобы решить неравенство x 2 + 3 x — 4 solve x^2+3x-4

4. Решение систем рациональных неравенств.
Пример. Чтобы решить систему неравенств

нужно ввести solve x^2+3x-4 && 2х^2 — x + 8 > 0
Знаки && в данном случае обозначает логическое «И».

5. Раскрытие скобок + приведение подобных в выражении.
Пример . Чтобы раскрыть скобки в выражении (c+d) 2 (a-c) и привести подобные, нужно
ввести expand (c+d)^2*(a-c) .

6. Разложение выражения на множители.
Пример . Чтобы разложить на множители выражение x 2 + 3 x — 4, нужно ввести factor x^2 + 3x — 4 .

7. Вычисление суммы n первых членов последовательности (в том числе арифметической и геометрической прогрессий).
Пример . Чтобы вычислить сумму 20 первых членов последовательности, заданной формулой an = n 3 +n, нужно ввести sum n^3+n, n=1..20
Если нужно вычислить сумму первых 10 членов арифметической прогрессии, у которой первый член a 1 = 3, разность d = 5, то можно, как вариант, ввести a1=3, d=5, sum a1 + d(n-1), n=1..10
Если нужно вычислить сумму первых 7 членов геометрической прогрессии, у которой первый член b 1 = 3, разность q = 5, то можно, как вариант, ввести b1=3, q=5, sum b1*q^(n-1), n=1..7

8. Нахожд ение производной.
Пример . Чтобы найти производную функции f(x) = x 2 + 3 x — 4, нужно ввести derivative x^2 + 3x — 4

9. Нахожд ение неопределенного интеграла.
Пример . Чтобы найти первообразную функции f(x) = x 2 + 3 x — 4, нужно ввести integrate x^2 + 3x — 4

10. Вычисление определенного интеграла.
Пример . Чтобы вычислить интеграл функции f(x) = x 2 + 3 x — 4 на отрезке [5, 7],
нужно ввести integrate x^2 + 3x — 4, x=5..7

11. Вычисление пределов.
Пример . Чтобы убедиться, что

введите lim (x -> 0) (sin x)/x и посмотрите ответ. Если нужно вычислить какой-то предел при x, стремящемся к бесконечности, следует вводить x -> inf .

12. Исследование функции и построение графика .
Пример . Чтобы исследовать функцию x 3 — 3 x 2 и построить ее график, просто введите x^3-3x^2 . Вы получите корни (точки пересечения с осью ОХ), производную, график, неопределенный интеграл, экстремумы.

13. Нахождение наибольшего и наименьшего значений функции на отрезке .
Пример . Чтобы найти минимальное значение функции x 3 — 3 x 2 на отрезке [0.5, 2],
нужно ввести minimize (x^3-x^2),
Чтобы найти максимальное значение функции x 3 — 3 x 2 на отрезке [0.5, 2],
нужно ввести maximize (x^3-x^2),


источники:

http://www.wolframalpha.com/examples/mathematics/algebra/

http://gghelp.ru/index/wolfram_alpha/0-43