Решить уравнения группы в 5

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Немного теории.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\< \begin 3x+y=7 \\ -5x+2y=3 \end \right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ \left\< \begin y = 7—3x \\ -5x+2(7-3x)=3 \end \right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\< \begin 2x+3y=-5 \\ x-3y=38 \end \right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ \left\< \begin 3x=33 \\ x-3y=38 \end \right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение \( x-3y=38 \) получим уравнение с переменной y: \( 11-3y=38 \). Решим это уравнение:
\( -3y=27 \Rightarrow y=-9 \)

Таким образом мы нашли решение системмы уравнений способом сложения: \( x=11; y=-9 \) или \( (11; -9) \)

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

О теореме Абеля-Руффини без групп и теории Галуа

Историческая справка

Поиск решения алгебраических уравнений оказал колоссальное влияние на развитие математики. Формула решения общего кубического уравнения впервые была получена итальянскими математиками 16-го века. Это событие ставшее первопричиной рассмотрения комплексных чисел, считается одним из поворотных моментов в истории математики. Судьбы Джероламо Кардано, Никколо Тартальи, Сципиона дель Ферро и их поисков решения кубического уравнения заслуживают отдельного романа со своими интригами, скандалами и расследованиями. Столь яркие истории достаточно редки в математике.

Начиная с 19-го века поиск формул для решения уравнений произвольных степеней положил начало теории групп и абстрактной алгебре, которые преобразили практически все разделы современной математики. Думаю, многие, кто интересовался историей и развитием алгебры, знают, что формулы для решения общего алгебраического уравнения степени выше четвертой не существует. Как сообщается, первое доказательство этого факта было дано итальянским математиком Паоло Руффини в самом конце восемнадцатого века, оно составляло около 500 страниц и все же содержало некоторые пробелы. Хотя отдельные математики, как Огюстен Коши, и признавали данное доказательство, но ввиду столь большого объема и сложности изложения, оно так и не было принято математическим сообществом. Считается, что первое полное доказательство дано норвежским математиком Нильсом Абелем и содержалось в двух работах, изданных в 1824 и 1826 годах. С тех пор оно носит название теоремы Абеля или теоремы Абеля-Руффини.

Если вы попытаетесь изучить это доказательство в его современном изложении, то окажется, что оно практически полность опирается на Теорию Галуа. Эварист Галуа был французским математиком 19-го века и современником Нильса Абеля. Помимо занятий математикой он вел активную политическую жизнь из-за чего несколько раз попадал в тюрьму. В возрасте всего двадцати лет был застрелен на дуэли, поводом для которой послужила любовная интрига, хотя есть предположения, что дуэль была подстроена его политическими противниками. Об этой истории написано достаточно много, кроме того, имеется перевод на русский язык его мемуаров и писем. Последнее письмо его другу Огюсту Шевалье было написано в ночь накануне дуэли, в нем он наспех излагает свои последние идеи. Несмотря на столь короткую жизнь, Эварист Галуа считается одним из родоначальников современной алгебры. Хотел бы заметить, что в популярном изложении создается некий романтический образ Галуа, как подростка-гения, который в одиночку, с нуля создал теорию групп и преобразил всю алгебру. Несомненно его идеи сыграли огромную роль, но если почитать его сочинения, то мы увидим, что он хорошо знал и опирался на знаменитые работы Лагранжа, Эйлера, Гаусса, Абеля, Якоби. Зачатки теории групп и перестановок появляются еще в работах Жозефа Луи Лагранжа по теории алгебраических уравнений, а также Карла Фридриха Гаусса в его знаменитых «Арифметических исследованиях». К тому же, теория Галуа в современном изложении была оформлена многими последующими математиками — Дедекиндом, Кронекером, Гильбертом, Артином и другими.

Мотивация данной статьи

Чуть менее года назад меня сильно увлекла статья об истории решения кубического уравнения и последующих безуспешных поисков формулы уравнения 5-й степени, длившихся почти триста лет. Сразу хочу отметить, что специального математического образования у меня нет и поэтому, попробовав прочесть современную версию доказательства теоремы Абеля-Руффини, я естественно ничего не понял. В моем сознании термины группа, кольцо и поле никак не ассоциировались с алгебраическими структурами. Но желание разобраться было столь велико, что я принялся за изучение курса высшей алгебры.

На первых этапах абстрактная алгебра была наверное самым сложным из того, что мне приходилось изучать ранее. Объем новых терминов и определений просто зашкаливал: группы, факторгруппы, моноиды, поля, кольца, тела, модули, идеалы, ядра, векторные пространства, биекции, сюръекции, инъекции, изоморфизмы, автоморфизмы, гомоморфизмы, эндоморфизмы и тд. Спустя несколько месяцев упорных занятий, я начал понимать формальную часть, но, к сожалению, интуитивного понимания, которое и являлось моей изначальной целью, я так и не достиг.

Дело в том, что практически все современные доказательства неразрешимости уравнений 5-й степени в радикалах сводятся к следующему. Рассматривается некоторое неприводимое уравнение, например x 5 -10x+2, после чего методами мат анализа определяется, что оно имеет три действительных и два комплексно-сопряженных корня. После чего заключается, что группой Галуа данного уравнения есть группа S5, которая не является разрешимой, и следовательно данное уравнение неразрешимо в радикалах. Доказательство теоремы Абеля-Руффини о неразрешимости общего уравнения также сводится к неразрешимости группы Sn. Для меня данные доказательства были слишком абстрактными и оторванными от конкретных уравнений. Когда я пытался представить их в терминах элементарных алгебраических операций, чтобы понять в чем заключается главная причина неразрешимости уравнений, у меня ничего не получалось. Возможно для тех, кто занимается этим достаточно долго, эти вещи могут казаться интуитивно понятными.

Немного иной подход описан в книге Алексеева «Теорема Абеля в задачах и решениях», основанной на лекциях Владимира Арнольда, но в изложенном там доказательстве помимо теории групп используются элементы комплексного анализа и Римановых поверхностей. Я также находил похожие статьи, использующие топологические аргументы в виде комбинаций петель и коммутаторов, но мне хотелось найти что-то чисто алгебраическое.

Параллельно изучая историю математики и понимая, что современная формулировка и доказательство сильно отличаются от того, как излагали свои идеи Лагранж, Руффини, Абель и Галуа, я решил прочесть первоисточники. К сожалению, на русский или английский по этой теме переведены лишь сочинения Галуа и одна из работ Абеля.

После некоторых поисков я наткнулся на статью 1845 года французского математика Пьера Лорана Ванцеля, в которой он переработал и сильно упростил доказательство Абеля-Руффини, о чем он пишет во введении. В этой работе, он так же упоминает мемуары Галуа и отмечает, что они будут опубликованы в скором времени. Для заметки — работы Галуа были опубликованы лишь в 1846 году Жозефом Лиувиллем, спустя почти 15 лет после смерти Галуа. Кстати, Пьер Лоран Ванцель, также был первым, кто доказал неразрешимость трисекции угла и удвоения куба с помощью циркуля и линейки — знаменитых задач стоявших еще со времен античности. Доказательства Ванцеля были изложены без использования абстрактной алгебры и теории Галуа, поскольку на тот момент они еще не были разработаны. Хотя работа и была доступна лишь на французском, которого я до этого практически не знал, но ввиду специфической темы, небольшого размера (всего 7 страниц) и наличия гугл переводчика, я справился достаточно быстро. По моему субъективному мнению, его доказательство теоремы Абеля-Руффини является наиболее простым для понимания.

Уже позже я нашел пример подобного доказательства основанного на работе Руффини в книге Чеботарёва “Основы Теории Галуа”. Далее я постараюсь кратко изложить принцип решения уравнений в радикалах и идею доказательства неразрешимости уравнения 5-й степени.

Решения уравнений в радикалах

Для дальнейшего понимания, потребуются минимальные пререквизиты:

Формулы Виета — напомню, что коэффициенты произвольного уравнения являются элементарными симметрическими функциями от его корней, то есть функциями, которые не меняют своего значения при любых перестановках корней. Примеры: x1 + x2 + x3, x1x2x3, x1x2 + x1x3 + x2x3.

Теорема о симметрических многочленах — каждую симметрическую функцию от корней, можно выразить с помощью элементарных симметрических функций (коэффициентов уравнения).

Первообразные корни n-й степени из единицы — комплексные величины не равные единице, но n-я степень которых, равна единице. Примеры: (-1) 2 = 1, (-1/2 + sqrt(-3)/2) 3 = 1, i 4 = 1 соответственно квадратный, кубический и биквадратный корни из единицы.

Основная теорема алгебры — гласит о том, что уравнение n-й степени с комплексными коэффициентами имеет ровно n комплексных корней с учетом кратности (корни могут быть одинаковые).

Первоначальная идея восходит к работе Жозефа Луи Лагранжа “Размышления о решении уравнений” 1770-1771 годов. Это достаточно объемное сочинение и я не нашел его перевода на русский или английский язык. Как указывается в разных источниках, в попытке найти формулу для уравнения 5-й степени, Лагранж проанализировал все имеющиеся к тому времени способы решения уравнений и выделил общий принцип, позволяющий решить уравнения 4-й и низших степеней. В этой же работе, изучая перестановки корней, он пришел к теореме, которая сейчас носит его имя. Принцип, открытый Лагранжем, заключался в том, чтобы найти выражения от корней заданного уравнения n-й степени, которые при всех возможных перестановках этих корней принимали n-1 значений, но в тоже время через них выражались первоначальные корни. На эти значения, можно составить уравнение n-1 степени и повторить операцию, тем самым сводя изначальное уравнение к цепочке уравнений меньших степеней, решив которые, можно получить корни первоначального уравнения. Рассмотрим один из примеров:

Пусть f(x) = x 4 + ax 3 + bx 2 + cx + d общее уравнение 4-й степени с произвольными коэффициентами a, b, c, d и x1, x2, x3, x4 его корни.

Напомним, что его коэффициенты — это элементарные симметрические функции от корней, в чем можно убедиться просто раскрыв скобки в выражении (x — x1)(x -x2)(x — x3)(x — x4):

Так как корни являются произвольными, то существует 4! = 24 различных вариантов их расположения, но можно составить выражение x1x2 + x3x4, которое принимает всего три разных значения при всех 24-х перестановках корней:

На эти три значения мы можем составить уже кубическое уравнение, корнями которого они и будут являться. Таким образом, мы сводим решение уравнения 4-й степени к уравнению 3-й степени. Для решения кубического уравнения мы можем воспользоваться резольвентой Лагранжа (y1 + wy2 + w 2 y3) 3 , где w — это кубический корень из единицы. Данное выражение принимает всего два разных значения при всех возможных 3! = 6 перестановках. Оно будет сохранять значение при циклических перестановках и менять знак при любой транспозиции. Получим:

Теперь составим квадратное уравнение на z1 и z2:

z1+z2 и z1z2 — будут симметрическими функциями от корней нашего изначального уравнения f(x), следовательно, по теореме о симметрических многочленах, напрямую выражаться через коэффициенты a, b, c, d. Решив квадратное уравнение мы получим значения z1, z2. После чего, извлекая кубические корни из z1, z2, и складывая с коэффициентом b, сможем выразить y1. Далее, c помощью y1 и коэффициентов a, b, d, решив два квадратных уравнения, мы доберемся до корней x1, x2, x3, x4 изначального уравнения.

Данный пример показывает, что произвольное уравнение 4-й степени решается путем составления вспомогательных кубического и квадратных уравнений. Далее я приведу рассуждение, почему подобный прием невозможен для общего уравнения 5-й степени.

Неразрешимость уравнения 5-й степени

Итак, мы хотим показать, что ни один корень общего уравнения 5-й степени не может быть выражен через его коэффициенты путем решения цепочки вспомогательных двучленных уравнений низших степеней.

Пусть f(x) = x 5 + ax 4 + bx 3 + cx 2 + xd + e общее уравнение 5-й степени с произвольными коэффициентами a, b, c, d, e и x1, x2, x3, x4, x5 его корни. Обозначим за y1 первый радикал входящий в значение x1 в порядке вычисления. Пусть y1 n = p, где p будет какой-то симметрической функцией от корней и, следовательно, напрямую выражаться через коэффициенты a, b, c, d, e. Заметим, что y1 уже не будет симметрической, а лишь рациональной функцией g от корней — g(x1, x2, x3, x4, x5). Следовательно, g должно менять значение при перестановке любых двух корней. Тогда эти значения будут являться корнями уравнения y1 n = p, которые имеют вид g, zg, z 2 g, z 3 g … z n-1 g, где z — первообразный корень n-й степени из единицы (z n =1). Рассмотрим произвольную транспозицию, например (x1, x2), тогда

если мы применим ее еще раз, то получим:

Из этого следует, что z 2 = 1, то есть z должен быть квадратным корнем из единицы (z = -1) и соответственно первый радикал y1 будет квадратным. Поясним: так как корни являются произвольными, то g должно сохранять значение при любых четных перестановках корней и менять знак при нечетных. Теперь покажем, что значение функции g не будет меняться при циклической перестановке трех корней (x1, x2, x3). Здесь стоит пояснить, что циклическая перестановка (x1, x2, x3) четная и может быть представлена, как произведение транспозиций (x1, x2)(x2, x3). То есть, функция g не поменяет своего значения при данной перестановке. Еще заметим, что функция g не изменится при циклической перестановке пяти корней, так как она так же раскладывается в произведение четного количества транспозиций. Присоединяя радикал y1 к выражениям от коэффициентов с помощью базовых арифметических операций, мы будем получать симметрические функции относительно всех циклов на трех и пяти корнях и вообще любых четных перестановок, но при перестановке содержащей нечетное количество транспозиций, y1 будет менять знак. Дальнейшее присоединение квадратных радикалов не даст нам ничего нового. Теперь предположим, что мы пришли к радикалу, который меняет свое значение лишь при тройных циклах. Обозначим его y2, тогда y2 n = q, где q — это рациональная функция от коэффициентов a, b, c, d, e и радикала y1.

В данном случае z 3 = 1, то есть z здесь будет кубическим корнем из единицы.

Теперь произведем циклическую перестановку 5-и корней

Так как z должен быть кубическим корнем из единицы, как мы выяснили ранее, то единственным вариантом будет z = 1 и g должна быть инвариантна при любой из этих циклических перестановок. Но тогда она должна быть инвариантна и при циклической перестановке x3,x2,x5,x1,x4 -> x2,x5,x1,x4,x3. Отсюда, одной транспозицией мы можем получить, что

но, выше мы уже видели, что

а из этого следует

что приводит нас к противоречию, так как мы предполагали, что g меняет значение при циклической перестановке трех корней (x1, x2, x3).

Еще одним вариантом, было бы показать что все четные перестановки на пяти корнях порождаются тройными циклами, то есть, если есть тройные циклы, то никаких выражений от корней, которые бы сохраняли набор значений при всех четных перестановках, не существует. Если теперь перевести это на теоретико-групповой язык, то получается, что группа общего уравнения пятой степени есть симметрическая группа S5, в которой существует 5! = 120 различных перестановок пяти корней. Далее, путем присоединения квадратного корня из дискриминанта, мы можем понизить ее до знакопеременной группы четных перестановок A5, которая содержит 120/2 = 60 перестановок. Но A5 является простой группой, в которой нет никаких нетривиальных нормальных подгрупп, которым бы соответствовали выражения от корней сохраняющие значения при определенных перестановках, из чего следует, что присоединение любых дополнительных радикалов не приблизит нас к решению.

Заключение

Поводом для написания данной статьи послужило желание структурировать свои мысли по этой теме и представить идеи о неразрешимости уравнений в радикалах без привлечения абстрактной алгебры и теории Галуа. По моему мнению, в подавляющем большинстве современных изложений теряется связь между областью, в которой происходит доказательство и конкретными уравнениями. Если у кого-то есть замечания, дополнения или ссылки на подобные элементарные изложения, буду рад услышать.

О решении уравнений в 5–6-х классах

Разделы: Математика

Сухие строки уравнений —
В них сила разума влилась.
В них объяснение явлений,
Вещей разгаданная связь.
Л.М.Фридман

Уравнения в школьном курсе математики занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники. Обучение детей умению решать уравнения начинается уже в начальной школе. У учеников формируется понятие уравнения, как равенства с неизвестным числом, которое требуется найти. Используя правила нахождения неизвестных компонентов, дети учатся находить корни простейших уравнений. Свое дальнейшее развитие содержательно-методическая линия уравнений получает в 5-6 классах, причем на этом этапе уже есть возможность и необходимость показать детям прикладную ценность уравнений. Однако, по моему мнению, чрезмерное стремление некоторых педагогов к использованию уравнений для решения текстовых задач в 5 классе, является необоснованным и в некоторой степени вредным. Оно не способствует в полной мере развитию мыслительных навыков детей. В пятом классе со своими учениками я рассматриваю арифметические подходы к решению задач разных типов. Учебные пособия “Математика-5” , “Математика-6” И.И. Зубаревой, А.Г. Мордковича нацеливают педагога на постепенное введение буквенных выражений, уравнений. Учащиеся учатся использовать их для перевода предложений, сформулированных на русском языке, на математический язык. Дети осознанно подходят к составлению уравнения по условию задачи, постепенно овладевают умением выделять величины, устанавливать связи и зависимости между ними. Но для того, чтобы ребенок мог полноценно решить задачу с помощью уравнения, ему необходимо уметь решать уравнения. Обучению приемам решения уравнений уделяю достаточно много времени. В пятом классе закрепляю и довожу до автоматизма умение решать уравнения “по компонентам”, ввожу прием “форточка” для решения двухшаговых уравнений, этот же приемом использую для решения более сложных уравнений. Дети часто затрудняются при выборе действия для нахождения неизвестного компонента. Чтобы избежать ошибки, использую прием “маленький пример”, который позволяет ребенку на однозначных числах выяснить, как найти неизвестное число и по аналогии выполнить действие. Например, надо решить уравнение (123х+ 34):18 = — 45. ребенок будет действовать следующим образом:

маленький пример”: 6:2=3 6=3*2

Таким образом, оставляя одно действие, заключая все остальное в “форточку”, ребенок придет к простейшему уравнению. Прием “форточка” вызывает интерес детей, привлекает их внимание, надолго запоминается. Кроме того, его использую как пропедевтику способа замены переменных.

Уже в шестом классе начинаю вводить способ решения уравнений, сводящихся к линейным, основанный на переносе слагаемых. Дети умеют раскрывать скобки, приводить подобные. Но при этом обязательно показываю, что, например, уравнение

2х-34= -56 можно решить двумя способами: использовать “форточку” или перенести слагаемые. Это делаю для того, чтобы дети привыкали к поиску разных способов выполнения одной и той же задачи, выбору наиболее рационального. Такая система работы дает положительный результат: даже самые слабые дети успешно решают уравнения. Этот подход к обучению умению решать уравнения был мной апробирован в классе компенсирующего обучения.

Далее предлагаю проекты уроков в 6 классе, на котором ввожу способ решения уравнений с переносом слагаемых. На уроках используются презентации, выполненные в программе PowerPoint. Более эффективно использовать интерактивную доску.

Тема урока: Решение уравнений

Цели урока:Повторение способов решения простейших и двухшаговых уравнений.

  • Формирование навыка решения уравнений, в которых переменная находится в обеих частях.
  • Развитие исследовательских умений учащихся.
  • Закрепление коммуникативных навыков.
  • Привитие интереса к предмету.

    Оборудование: интерактивная доска, сканер, учебник “Математика-6”, И.И. Зубарева, А.Г. Мордкович.

    Этап урокаЦель этапа урокаСодержаниеМетодический комментарий
    1. Проверка домашней работыЗакрепление навыка самопроверки, умения находить свои и чужие ошибки, объяснять их причину;

    Актуализация знаний по теме урока.1. Упростите выражение:

    2. Решите уравнение:

    б) 36: (12+х) = -6.Ученики проверяют домашнее задание, сверяя собственную работу с работой одноклассника, которую учитель на перемене сканирует и выводит на экран.2. Изучение нового материалаПовторение ранее освоенных детьми способов решения простейших и двухшаговых уравнений, формирование нового способа.Беседа по домашней работе:

    Какие рассуждения вы проводили при решении первого уравнения из домашней работы? Второго уравнения?

    1) Попробуйте провести аналогичные рассуждения для решения уравнения

    Как надо изменить уравнение, чтобы можно было применить имеющиеся знания по решению уравнений?

    3) При переезде через государственную границу человек меняет свой паспорт, а слагаемое меняет свой знак.

    4) Ребята! Как бы вы поступили при решении уравнения

    5) А такого уравнения

    6) Хорошо, а теперь давайте попробуем составить алгоритм решения уравнений, похожих на уравнение 7(2+у)-3у=5у-6.При изучении нового материала используется презентация-сопровождение к уроку. Приложение 1.

    1) Учитель создает проблемную ситуацию.

    Учащиеся делают вывод о том, что известные им приемы не работают.

    2) Дети говорят о том, что было бы хорошо, если бы все переменные были в одной стороне уравнения.

    3) Далее учитель показывает, как перенести слагаемые из одной части уравнения в другую.

    4) Перенесли бы слагаемые 14 и 5у, затем привели подобные и нашли значение переменной.

    5) Сначала бы раскрыли скобки, затем выполнили перенос слагаемых, приведение подобных и нашли значение переменной.

    6) Формулируют последовательность действий и вклеивают в свои справочники алгоритм решения уравнения, в котором есть скобки и переменная может находиться в разных частях уравнения.3. Первичное закреплениеОтработка умения применять полученный прием решения уравненияРешите уравнения:

    е)-3(5а-1)+4а = 2а+7(5-3а)Дети решают уравнения.

    Самопроверка по образцу, который дает учитель.

    Синим цветом выделены уравнения повышенной для этого урока сложности, их выполняют те ученики, которые быстрее других справляются с работой.4. Творческое закреплениеФормирование исследовательских умений учащихся.Ребята! Скажите, сколько корней получилось у тех уравнений, которые вы успели решить?

    Как вы думаете, это всегда будет так?

    Давайте наше предположение проверим.

    Предлагаю в группах обсудить решение следующих уравнений:

    1 группа – решите уравнение 3х-12=0;

    2 группа – решите уравнение

    3 группа – решите уравнение

    Сколько корней получилось у ваших уравнений?

    Вывод: Уравнение вида ax = b может иметь один корень, может не иметь корней, может иметь бесконечно много корней.Учитель создаёт ситуацию для исследования. Дети выдвигают гипотезу.

    Учащиеся работают в группах.

    Учитель оказывает помощь группам при необходимости.

    Организует обсуждение полученных результатов, помогает сделать выводы.

    Таблица с выводами (заранее распечатанная) вклеивается в справочник5. Рефлексия.Что нового вы узнали сегодня на уроке? Что вами понято? Что вызывает затруднения? Что вам поможет преодолеть трудности?6. Домашнее заданиеВыучить алгоритм, выполнить упражнения: 580(в), 581(в), 582(в).

    Тема урока: Решение уравнений.

    Цели урока:

    1. Закрепление навыка решения простейших и двухшаговых уравнений.
    2. Формирование умения решать уравнения, используя перенос слагаемых из одной части в другую.
    3. Развитие коммуникативных навыков учащихся.
    4. Первичный контроль знаний и умений учеников по данной теме.

    Оборудование: интерактивная доска, компьютерный класс, учебник “Математика-6”, И.И. Зубарева, А.Г. Мордкович.

    Этап урокаЦель этапа урокаСодержаниеМетодический комментарий
    1. Проверка домашней работыЗакрепление навыка самопроверки, умения находить свои и чужие ошибки, объяснять их причину;

    Актуализация знаний по теме урока.Решите уравнение:

    в) 17+3(15-с)=(4-с)-2(с-5).Ученики проверяют домашнее задание, сверяя собственную работу с работой одноклассника, которую учитель на перемене сканирует и выводит на экран.

    Учитель оказывает помощь слабоуспевающим ученикам.2. Закрепление материалаПовторение необходимых знаний, закрепление изученного на предыдущем уроке, подготовка к тестированию1) Раскрытие скобок

    2) Повторение алгоритма решения уравнений. Дети обсуждают в парах , а один ученик на компьютере в режиме “пауза” перетаскивает фигуры в нужном порядке.

    3) Решение уравнений (проектор переводится в режим “пауза”), один ребенок работает на компьютере, а затем работа проверяется детьми.При изучении нового материала используется презентация-сопровождение к уроку. Приложение 2.3. Первичный контрольПроверка уровня усвоения нового приема решения уравненийТестирование.

    9 человек проходят тестирование на компьютерах, остальные самостоятельно работают на местах.


    источники:

    http://habr.com/ru/post/568552/

    http://urok.1sept.ru/articles/534961